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4Département d’Astrophysique/AIM, CEA/IRFU, CNRS/INSU,
Univ. Paris-Saclay & Univ. de Paris Cité, Gif-sur-Yvette, 91191,
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Abstract

We review the state of the art of three dimensional numerical sim-
ulations of solar and stellar dynamos. We summarize fundamental
constraints of numerical modelling and the techniques to alleviate these
restrictions. Brief summary of the relevant observations that the sim-
ulations seek to capture is given. We survey the current progress of
simulations of solar convection and the resulting large-scale dynamo.
We continue to studies that model the Sun at different ages and
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2 Simulations of solar and stellar dynamos and their theoretical interpretation

to studies of stars of different masses and evolutionary stages. Both
simulations and observations indicate that rotation, measured by the
Rossby number which is the ratio of rotation period and convective
turnover time, is a key ingredient in setting the overall level and char-
acteristics of magnetic activity. Finally, efforts to understand global
3D simulations in terms of mean-field dynamo theory are discussed.

Keywords: Dynamo, Magnetohydrodynamics, Simulation, Turbulence

1 Introduction

The intriguing coherence of the solar magnetic cycle has fascinated researchers
for more than a century starting from Hale’s discovery of magnetic field in
sunspots (Hale, 1908; Hale et al, 1919), and early attempts to build simple
models (Larmor, 1919; Cowling, 1933). The first successful models of the solar
cycle made use of mean-field approximations yielding equations where only the
large-scale contributions were explicitly computed, whereas the small scales
were characterised by physically plausible parameterizations (Parker, 1955;
Steenbeck and Krause, 1969). Mean-field models opened up new avenues in
studying solar and stellar magnetism but their Achilles’ heel is the parame-
terizations of the small scales which are in general untractable analytically in
parameter regimes relevant to stars. This is due to the closure problem of tur-
bulence rendering such models susceptible to fine-tuning. A review of modern
mean-field theory is presented elsewhere in this volume (Brandenburg et al,
2023).

Rapidly increasing computing power allowed for the first direct solutions of
the equations of (magneto)hydrodynamics in spherical shells in the late 1970s
and early 1980s (Gilman, 1977; Gilman and Miller, 1981; Gilman, 1983; Glatz-
maier, 1985). Prior to the these simulations and the discovery of the internal
rotation profile of the Sun, the angular velocity was generally assumed to
decrease as a function of radius, in which case the propagation of the dynamo
wave from a mean-field αΩ dynamo is predicted to be equatorward given
typical assumptions regarding the influence of the Coriolis force on convec-
tive eddies (Parker, 1955; Steenbeck and Krause, 1969; Yoshimura, 1975); see,
however, Roberts and Stix (1972). This changed definitively when helioseis-
mology revealed that the angular velocity is actually increasing with radius
in the bulk of the solar convection zone (e.g. Duvall et al, 1984; Schou et al,
1998) which lead to the “dynamo dilemma” (Parker, 1987). This dilemma was
also captured by the early 3D simulations where solar-like differential rota-
tion with fast equator and slow poles was qualitatively reproduced, but where
the dynamo waves propagated toward the poles, contrary to the Sun (Gilman,
1983; Glatzmaier, 1985).
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After this, the interest in 3D simulations of solar and stellar dynamos
waned and was not rekindled until the early 2000s, starting with the develop-
ment of the ASH (Anelastic Spherical Harmonic) code (e.g. Miesch et al, 2000;
Elliott et al, 2000; Brun and Toomre, 2002). While many of the early studies
concentrated on the Sun (e.g. Brun et al, 2004; Browning et al, 2006; Miesch
et al, 2008), a proliferation of models from various groups using different codes
occurred in the 2010s when simulations of more rapidly rotating Suns started
to yield cycles and equatorward migration more or less routinely (e.g. Ghizaru
et al, 2010; Käpylä et al, 2010; Brown et al, 2011; Käpylä et al, 2012; Nel-
son et al, 2013; Augustson et al, 2015; Mabuchi et al, 2015; Simitev et al,
2015). Furthermore, simulations of main-sequence stars other than the Sun
also started to appear covering the mass range from fully convective M dwarfs
(e.g. Dobler et al, 2006; Browning, 2008; Yadav et al, 2015a; Bice and Toomre,
2020; Käpylä, 2021) to F stars with thin surface convection zones (August-
son et al, 2013; Breton et al, 2022), as well as core convection, dynamos, and
interaction with fossil fields in more massive A, B and O stars (e.g. Feather-
stone et al, 2009; Augustson et al, 2016). Models exploring stellar magnetism
outside of the main sequence have also started to appear, including pre-main
sequence stars (e.g. Emeriau-Viard and Brun, 2017), red giants (e.g. Dorch,
2004; Brun and Palacios, 2009), and newly born neutron stars (e.g. Raynaud
et al, 2020; Masada et al, 2022).

Parallel to the developments in simulations, observational data and knowl-
edge regarding stellar magnetism has also experienced explosive growth. We
now have dozens of stars with observed cycles from long-term observing cam-
paigns monitoring chromospheric emission (e.g. Baliunas et al, 1995). However,
the systematics of these cycles as a function of stellar rotation are still under
debate (e.g. Brandenburg et al, 2017; Boro Saikia et al, 2018b; Olspert et al,
2018; Bonanno and Corsaro, 2022). Zeeman-Doppler imaging has also revealed
polarity reversals (e.g. Kochukhov et al, 2013; Boro Saikia et al, 2018a), as
well as large-scale non-axisymmetric and dipole-dominated magnetic fields
in rapidly rotating late-type stars (e.g. Kochukhov, 2021). Finally, magnetic
activity saturates when the stellar Rossby number Ro⋆ = Prot/τconv, which
is the ratio of the rotation period and the convective turnover time, is less
than about 0.1, such that for lower Ro the activity and magnetic field strength
is roughly constant (e.g. Wright et al, 2018; Reiners et al, 2022). These
basic observations are crucial constraints for the numerical simulations. Nev-
ertheless, the Sun still poses the stringest constraints to simulations due its
proximity and access to its interior structure through helioseismology. Some-
what surprisingly the current 3D simulations struggle to reproduce not only
the dynamo, but also the convective amplitudes and the differential rotation
of the Sun, often yielding anti-solar (slow equator, fast poles) solutions with
nominally solar luminosity and rotation rate (e.g. Matt et al, 2011; Käpylä
et al, 2014; Gastine et al, 2014; Hotta et al, 2015; Brun et al, 2017). This issue
has been dubbed the convective conundrum (O’Mara et al, 2016) and poses
arguably the greatest challenge in the field of stellar dynamo simulations today.
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It has also been suggested that that the Sun is close to a transition where
its dynamo efficiency diminishes (e.g. van Saders et al, 2016), possibly due to
a shift from solar-like to anti-solar differential rotation, making it difficult to
capture by simulations (e.g. Käpylä et al, 2014; Brun et al, 2022). Our aim in
the following is to review the current successes and shortcomings of current
simulations in capturing the relevant observations.

The remainder of the review is organised as follows: the basic equations and
physics are discussed in Section 2 and the limitations of the numerical approach
are reviewed in Section 3. The relevant observations and the main results of
current 3D simulations of various types of stars are reviewed in Section 4 and
Section 5, respectively. Section 6 gives an overview of the comparisons between
mean-field models and global simulations. Finally, we conclude in Section 7
with an overview of the state of the field, current challenges, and possible
future directions.

2 Relevant physics and equations

Stellar convection zones are described by the equations of magnetohydro-
dynamics (MHD), describing the time evolution of the magnetic field and
conservation of mass, momentum, and energy:

∂B

∂t
= ∇× (u×B − ηµ0J), (1)

∂ρ

∂t
= −∇ · (ρu), (2)

ρ
∂u

∂t
= −∇ · (ρuu) + ρg −∇p− 2ρΩ0 ×U + J ×B +∇ · F visc, (3)

ρT
∂s

∂t
= −∇ · (ρsu) +∇ · F +H, (4)

where B is the magnetic field, u the velocity, η is the magnetic diffusivity,
µ0 the permeability of vacuum, J = µ−1

0 ∇ × B is the current density, ρ is
the fluid density, g = −∇ϕ is the acceleration due to gravity, where ϕ is the
gravitational potential, p is the gas pressure, Ω0 is the rotation rate of the
star, F visc is the viscous force, s is the specific entropy, and F = F rad+FSGS

describes radiative and any subgrid-scale (SGS) fluxes that are present. H
describes additional cooling and heating that is sometimes used instead of, or
in addition to, the radiative flux (e.g. Ghizaru et al, 2010; Guerrero et al, 2019;
Matilsky et al, 2019), or to take into account heating due to nuclear reactions
in the core of the star (e.g. Dobler et al, 2006; Käpylä, 2021; Brun et al, 2022).
Most often the gas is assumed to be fully ionised and to obey the ideal gas
equation p = RρT , where R = cP − cV is the gas constant and cP and cV are
the specific heat capacities in constant pressure and volume, respectively (see,
however, e.g. Hotta et al, 2015; Strugarek et al, 2016, for other approaches).
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The viscous force is given by

F visc = 2νρS, (5)

where ν is the kinematic viscosity and

Sij = 1
2 (Ui; j + Uj; i)− 1

3δij∇ ·U , (6)

is the traceless rate of strain tensor where where the semicolons denote covari-
ant derivatives (cf. Mitra et al, 2009). In principle ν is a function of density
and temperature according to Spitzer (1962), but in practice the current
simulations adapt various explicit or implicit large-eddy simulation (LES)
formulations that are geared toward minimizing diffusion and maximising
numerical stability on a given grid resolution (for a review, see e.g. Miesch
et al, 2015).

Due to the short mean-free path of photons in stellar interiors, radiation is
typically modeled via the diffusion approximation with

F rad = −K∇T, (7)

where K is the radiative conductivity which is related to the opacity κ of the
matter via

K =
16σSBT

3

3κρ
, (8)

where σSB is the Stefan–Boltzmann constant. The radiative conductivity is
often taken to be a fixed function of radius resulting either from a stellar
evolution model (e.g. Brun et al, 2011; Hotta et al, 2022), or a simpler fixed
analytic prescription producing a qualitatively similar behavior (e.g. Käpylä
et al, 2013; Warnecke, 2018). Alternatively, K can also be taken to be depen-
dent on the ambient thermodynamic state via the Kramers opacity law (e.g.
Käpylä et al, 2020; Viviani and Käpylä, 2021) with

κ ∝ ρT−7/2, (9)

which allows a non-linear back-reaction of, for example, rotation and magnetic
fields (e.g. Käpylä et al, 2019). Radiative cooling and heating can also be
included via the heating/cooling term,

H = −∇ · F rad, (10)

as is often done in the simulations with the Rayleigh code (e.g. Featherstone
and Hindman, 2016b; Bice and Toomre, 2022). Yet another approach is to
relax the thermodynamics toward a fixed reference state using a Newtonian
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cooling term as is done in the Eulag simulations (e.g. Ghizaru et al, 2010;
Passos and Charbonneau, 2014; Strugarek et al, 2018; Guerrero et al, 2019).

Typical numerical methods need to include some form of subgrid-scale
(SGS) diffusion in the entropy equation to ensure numerical stability. In some
methods, such as those used in the ASH, Rayleigh, and Pencil Code, this
is explicitly included in a term that is proportional to the entropy gradient
(e.g. Brun et al, 2004; Käpylä et al, 2013; Matilsky and Toomre, 2020)

FSGS = −χSGSρT∇s, (11)

where χSGS is the SGS thermal diffusivity that is responsible for turbulent dif-
fusion at unresolved scales. This definition implicitly assumes that ds/dr < 0,
that is, that the turbulent diffusion is due to unresolved Schwarzschild unsta-
ble convection, and the SGS term contributes to a positive (outward) energy
flux. Often it is advantageous to decouple the SGS diffusion from the mean
stratification such that the SGS diffusion is applied not on the total entropy
s but, for example, to deviations from the spherically symmetric mean state
s′ = s − s, where the overbar denotes suitable averaging, typically over the

horizontal directions. This leads to a vanishing mean SGS flux, FSGS ≈ 0.
This is advantageous if part of the convection zone is weakly stably stratified,
or a stably stratified radiative layer is taken into account below the convection
zone (e.g. Brun et al, 2011; Käpylä et al, 2020). An alternative approach is to
include SGS effects implicitly such that the effective diffusion at small scales
is determined by the numerical scheme itself. This is done in, for example, the
Eulag (e.g. Ghizaru et al, 2010) and R2D2 codes (e.g. Hotta et al, 2014).

In practice, all of the diffusion coefficients in the simulations are much larger
than their counterparts in stars, e.g. such that ν ≫ ν⋆, η ≫ η⋆, where the
subscript ⋆ refers to stellar values. Furthermore, the radiative diffusivity χ =
K/(cPρ) is also practically always much smaller than χSGS (see Appendix A
of Käpylä et al, 2017a). Therefore all of the current simulations need to be
understood as large-eddy simulations (LES). Yet, most of them do not consider
the non-dissipative contribution of the unresolved small scales. Furthermore,
some models (e.g. Strugarek et al, 2016; Hotta et al, 2022) dispense with
the physical diffusion terms completely in order to minimize the diffusion on
resolved scales while exerting diffusion only at scales near the grid scale.

2.1 Dimensionless parameters and diagnostics

A number of non-dimensional parameters arise in the analysis of the MHD
equations and which define the simulations. These include the Rayleigh number
which describes the efficiency of convection

Ra =
gd4

νχ

(
− 1

cP

ds

dr

)
, (12)
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where d is a length scale; typically taken to be the shell thickness, the thermal
and magnetic Prandtl numbers describe the relative importance of various
diffusion terms:

Pr =
ν

χ
, PrM =

ν

η
, (13)

and the Taylor number

Ta =
4Ω0d

4

ν2
, (14)

which measures the strength of rotation. The latter is related to the Ekman
number via Ek = 2Ta−1/2. Most often the relevant thermal Prandtl number
is based on the SGS diffusion

PrSGS =
ν

χSGS
, (15)

because χSGS ≫ χ. For completeness, the viscosity ν used in simulations is
also an effective or SGS viscosity because it is always much larger than the
real physical value. However, it has the same functional form as the physical
viscosity whereas a term corresponding to the SGS entropy diffusion does not
appear in the original equations. Additionally the geometry and the result-
ing density stratification are input parameters of the models, along with the
boundary conditions applied to the various quantities.

The most common diagnostic parameters used to describe the simulations
include the Reynolds and Péclet numbers

Re =
urmsℓ

ν
, ReM =

urmsℓ

η
= PrMRe, Pe =

urmsℓ

χ
= PrRe, (16)

where urms is the rms-velocity and ℓ is a length scale, both of which are
outcomes of the simulations. The magnetic Reynolds number is of particular
interest for dynamo simulations due to the bifurcations related to the exci-
tation of large-scale and small-scale dynamos (SSD) (e.g. Brandenburg and
Subramanian, 2005; Rempel et al, 2023). The rotational effect on the flow is
measured by the Rossby (inverse Coriolis) number

Ro =
urms

2Ω0ℓ
∝ Co−1. (17)

An alternative way to define the Rossby number, which automatically takes
the changing length scale into account is

Roω =
ωrms

2Ω0
∝ Co−1

ω , (18)
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where ωrms is the rms-vorticity with ω = ∇×u. Order of magnitude estimates
for some of these parameters in the deep parts of the solar convection zone
and in a core convection zone of a 20M⊙ O star in comparison to current
simulations are listed in Table 1.

Our discussion above has assumed that the dimensional MHD equations
are being solved, in which case these non-dimensional parameters are diag-
nostic outputs of the simulations. An alternative approach, also employed
by many authors (see, e.g. Gastine et al, 2016; Brown et al, 2020) is to
non-dimensionalize the governing equations at the beginning; in this case
the various non-dimensional parameters discussed here appear directly in the
equations, and serve as input parameters that specify the problem. To illustrate
the procedure, suppose we choose to measure lengths in units of a character-
istic length ℓc, times in units of some time τc, velocities in units of uc, and
temperatures in units of Tc. That is, we assume x = ℓcxnd, t = τctnd, and so
forth, where the “nd” subscript denotes non-dimensional variables. Then, to
take a simple example, the dimensional Boussinesq momentum equation in the
absence of rotation or magnetism in a plane layer,

∂u

∂t
+ u · ∇u = −∇ϖ + ν∇2u+ αgT ẑ, (19)

where ϖ ∼ P/ρ is a reduced pressure and other symbols take their usual
meanings, would be rewritten as

uc

τc

∂und

∂tnd
+

u2
c

ℓc
und ·∇ndund = −ϖc

ℓc
∇ndϖnd +

uc

ℓ2c
ν∇2

ndund +αgTcTndẑ, (20)

where we have retained nd subscripts on all non-dimensional quantities (includ-
ing the spatial and temporal derivatives), and where ẑ is the vertical unit
vector. Many choices of the characteristic scales τc, ℓc, etc., are possible, and
in general these will each yield slightly different forms of the non-dimensional
equations. A common choice is to measure lengths in units of the convection
zone thickness (≡ L), times in units of a thermal diffusion time across that
length (τc = L2/χ), and to take uc = L/τc for consistency; upon substitution
(and simplification) we then find

∂und

∂tnd
+ und · ∇ndund = − 1

Ma2
∇ndϖnd + Pr∇2

ndund +RaPrTndẑ, (21)

now involving Ma2 = (Pc/ρc)/u
2
c , Pr = ν/χ, and Ra = gαTcL

3/(νχ) (versions
of the Mach, Prandtl, and Rayleigh numbers) as input parameters.

An advantage of this approach is that it is easier to avoid inadvertently
“running the same simulation twice” – that is, conducting calculations with
different luminosities, rotation rates, etc., that are nonetheless functionally
equivalent (because they have the same governing non-dimensional parame-
ters). On the other hand, it is sometimes difficult to “re-dimensionalize” such
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Table 1 Orders of magnitude of some dimensionless parameters in the main sequence
phase of the Sun in the bulk of convection zone and in a core convection zone of a 20M⊙
O9 star. Typical values from current global 3D simulations of stellar convection and
dynamos are listed in the last column.

Parameter Sun (M⊙) O9 (20M⊙) Simulations

Ra 1020 1024 109

Pr 10−6 10−5 10−1 . . . 10
PrM 10−3 103 10−1 . . . 10
Re 1013 1011 104

Pe 107 106 104

ReM 1010 1014 104

∆ρ 106 3 102

Ro 0.1 . . . 1 11 10−2 . . . 103

Note: Solar values are from Ossendrijver (2003) and Schumacher and Sreenivasan (2020)
whereas the values for the O9 star are from Jermyn et al (2022). ∆ρ is the ratio of the fluid
density between the bottom and top of the convection zone. We note that in Augustson
et al (2019) the Prandtl numbers for the O9 star are somewhat lower, i.e., Pr = 10−6 and
PrM = 0.1.
1Estimated using Ro = Prot/τconv where τconv was taken from Fig. 74 of Jermyn et al (2022)
and the solar rotation period P⊙ = 27 days was used as a reference value for Prot.

calculations and so make contact with any given astrophysical object; for illus-
trations of the procedure and its ambiguities, see discussions in Jones et al
(2011) and Yadav et al (2016a). We generally adopt the “dimensional” view
throughout the remainder of this review.

2.2 Relevant time and length scales in stars

The structure of a star is determined by its mass M , luminosity L, chemical
composition µ, and rotation rate Ω0, the latter corresponding to its age. This
information, along with material properties such as viscosity, opacity, equation
of state, and nuclear energy production rate is in principle enough to construct
a time-dependent model of the evolution of the star (e.g. Kippenhahn et al,
2012). However, in practice the evolution of main-sequence stars occurs over
the nuclear timescale τn which is of the order of τn ≈ 1010 yr for the Sun,
which is much longer than what can be covered in any 3D dynamo simula-
tion. Chemical evolution due to nuclear reactions occurs also in this timescale
and therefore the solar and stellar dynamo simulations assume that the stel-
lar structure is given and fixed in the course of the simulations (see, however
Emeriau-Viard and Brun, 2017). By the same token, the gravitational poten-
tial is assumed to be fixed and spherically symmetric. Rotational evolution of
stars also happens on timescales of 108 to 109 years (e.g. Skumanich, 1972;
Barnes, 2003; Gallet and Bouvier, 2013) such that in 3D simulations the rota-
tion rate of the star is assumed to be fixed. There is an ongoing debate based
observational results suggesting magnetic braking slows down around the solar
age which might be due to a transition to anti-solar differential rotation and
a corresponding change in the dynamo (e.g. van Saders et al, 2016).
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In general, the thermal evolution of the star in 3D simulations still occurs
on a Kelvin–Helmholtz timescale

τKH =
GM2

2RL
, (22)

where G is the gravitational constant. The Kelvin-Helmholtz time for the solar
convection zone is of the order of 105 years which is still about two orders of
magnitude longer than the longest global 3D simulations to date (Passos and
Charbonneau, 2014; Käpylä et al, 2016). Various ways to overcome or circum-
vent this issue are discussed below in Section 3.1. The final timescale related
to stellar structure is the free-fall or acoustic timescale τac =

√
R3/GM , which

is of the order of 30 minutes for the Sun.
In terms of global dynamos the most important timescales are the rotation

period Prot and the convective turnover time,

τconv =
ℓ

uconv
, (23)

where ℓ is the convective length scale and uconv a suitably averaged convec-
tive velocity. The convective turnover time τconv can be estimated from solar
surface observation where granules overturn on a timescale of a few minutes.
Knowledge of τconv in deeper layers relies heavily on theoretical estimates, for
example, from mixing length models (e.g. Böhm-Vitense, 1958). These assume
that the length scale is proportional to the pressure scale height. At the same
time, convective velocities decrease such that τconv is of the order of a month
near the base of the solar convection zone (e.g. Stix, 2002). Stellar observa-
tions indicate that dynamo efficiency of stars is related to the Rossby number
(see, Section 5.2)

Ro =
Prot

τconv
. (24)

The Rossby number is the only non-dimensional diagnostic that the simula-
tions can capture relatively accurately; see Table 1 and Section 3.1.

Another timescale that the simulations need to capture is the activity cycle
period τcyc which is 22 years for the Sun, and which varies between years to
decades for stars other than the Sun (e.g. Baliunas et al, 1995; Hall et al,
2009; Olspert et al, 2018). It is, however, practically always necessary to run
simulations considerably longer because establishing the global dynamo and
reaching the final saturated dynamo mode takes typically significantly longer
(e.g. Käpylä et al, 2013; Matilsky and Toomre, 2020). Taking the thermal
relaxation also into account, the integration times are typically at least an
order of magnitude longer than the cycles established. The necessity to run
such long times is one of the major limiting factors in the quest to reach
astrophysically relevant parameter regimes.
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In principle the relevant length scales vary between the depth of the con-
vection zone ∆R (or the radius of the star R for fully convective stars), and the
Kolmogorov length scale ℓν where kinetic energy is dissipated into heat due
to viscosity (or to the magnetic dissipation scale ℓη in cases where PrM > 1).
According to the Kolmogorov turbulence phenomenology (e.g. Frisch, 1995),
ℓν can be estimated from the Reynolds numbers at the integral (L) and
Kolmogorov scales,

ℓν = L

(
ReL
Reℓν

)−3/4

. (25)

For the Sun, L = ∆R = 2 · 108 m and ReL ≳ 1012 (e.g. Ossendrijver, 2003;
Jermyn et al, 2022) and Reℓν = 1 by definition. These estimates yield an upper
limit of order of magnitude ℓν ≈ 0.1 m near the base of the solar convec-
tion zone. More detailed calculations yield values between 0.01 m (Kupka and
Muthsam, 2017) and 0.06 m (Schumacher and Sreenivasan, 2020). Further-
more, the dissipation scales of magnetic fields and temperature fluctuations

can be estimated from ℓη = ℓνPr
−3/4
M , and ℓχ = ℓνPr

−3/4, respectively. Even
though PrM,Pr ≪ 1, these scales are also very small in comparison to the
depth of the convection zone or the radius of the star. As will be discussed
below, all of the scales where physical diffusion occurs are several orders of
magnitude smaller than what can be achieved in any current or foreseeable
simulations (see also Kupka and Muthsam, 2017).

Another length scale that plays an important role is the pressure scale
height HP = −dr/d ln p which is related to the vertical scale of convection
cells. Near the surface HP is of the order of 100 km in the photosphere of the
Sun. On the other hand, at the base of the convection zone HP ≈ 5 · 104 km.
This reflects the fact that near the surface the pressure and density decrease
very rapidly and that capturing both the deep and photospheric convection in
a single model is therefore very challenging. In total the solar convection zone
encompasses more than 20 pressure scale heights. This translates to a density
difference of 106 between the photosphere and the base of the convection zone.
Estimates of the relevant temporal and length scales in the deep parts of the
solar convection zone are summarized in Figure 1.

3 Numerical approach to stellar dynamos

3.1 Simulation strategy

The main difficulty in solar and stellar dynamo simulations is that it is not
feasible to match the dimensionless parameters with those of real stars as seen
from the comparison of stellar and simulation parameters in Table 1. The only
general exception to this is the Rossby number but even there we face the
situation that only some of the convective scales in stars are strongly affected
by rotation. For example, in the Sun the near-surface layers are practically
unaffected by rotation whereas at the base of the convection zone the Rossby
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Fig. 1 Orders of magnitudes of time (a) and length (b) scales in the deep solar convection
zone. The gray shaded area indicates regions accessible to a typical current global simulation.

number is of the order of 0.1 (e.g. Ossendrijver, 2003). This is to be contrasted
with the Earth’s dynamo where the magnetic Reynolds number is ReM ≈ 103,
which is within reach of current simulations (e.g. Aubert and Gillet, 2021) and
where all convective scales are strongly rotationally constrained (Ro ≈ 10−6);
see, e.g., Roberts and King (2013).

A path that stellar dynamo simulations often follow to approach physi-
cally relevant regimes is to assume a fixed convective Rossby number (Gilman,
1977), given by

Roc =

(
Ra

PrTa

)1/2

. (26)

Here, the stellar luminosity fixes the level of driving through the Rayleigh
number, and the stellar rotation rate is fixed by observations. Using typical
estimates for Ra, Pr, and Ta for the Sun (Ossendrijver, 2003, see also Table 1)
we arrive at Roc ≈ 0.1 . . . 1. In simulations, the (SGS) Prandtl number PrSGS =
ν/χSGS is often fixed and changing the diffusivities ν and χSGS leads to Ra ∝
ν−2, Ta ∝ ν−2 and Roc = const. An obvious limitation is that the Prandtl
number in simulations is typically close to unity whereas in stars Pr ≪ 1
(e.g. Augustson et al, 2019; Schumacher and Sreenivasan, 2020; Jermyn et al,
2022). A similar argument applies to PrM in late-type stars whereas in the
core convection zones of massive O and B stars PrM ≫ 1 (e.g. Augustson
et al, 2016). Furthermore, in iLES models the values of the dimensionless
parameters are typically unknown and not precisely controllable, although it
is often possible to determine these a posteriori (e.g. Strugarek et al, 2016;
Hotta et al, 2022). Nevertheless, the strategy in both LES and iLES models is
to try to capture the stellar Rossby number with unrealistic Prandtl numbers
and to resolve enough scales in an effort to reach sufficiently high Re, ReM,
and Pe such that the large scale results are no longer affected. However, it is
still questionable whether such a regime has been reached even in the highest
resolution simulations to date (e.g. Hotta et al, 2022; Guerrero et al, 2022).
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3.2 Limitations of current numerical simulations

The challenge of doing direct numerical simulations (DNS) of stars is illus-
trated by considering the solar convection zone where the fluid Reynolds
number is of the order of at least 1012 (e.g. Ossendrijver, 2003; Jermyn et al,
2022). With this estimate and Eq. (25), the ratio of the system scale L,
here taken to be the depth of the solar convection zone or 200 Mm, to the
Kolmogorov scale ℓν , is

L

ℓν
=

(
ReL
Reℓν

)3/4

. (27)

With Reℓν = 1, we obtain L/ℓν = 109. This ratio gives the order of magnitude
of grid points that is required to capture all of the physically relevant scales
in the solar convection zone. Thus a direct 3D simulation requires 1027 grid
points. A somewhat lower, but still unattainable, number was reported in Chan
and Sofia (1986).

Current state-of-the-art global simulations have of the order of 1010 grid
points and are run on a few times 104 CPU cores. Assuming ideal weak scaling,
where the computation time remains constant when the number of CPUs is
increased proportional to the grid size, a DNS of the solar convection zone
requires 1021 CPU cores. Using a current 96-core AMD Epyc™ 9654 CPU with
360 W thermal design power as a reference1, gives a total power consumption
of 3.8 ·1021 W, corresponding roughly to a M9V main-sequence red dwarf. It is
clear that such power is neither available nor meaningful to be spent. Although
reaching an asymptotic regime where the large-scale dynamics are unaffected
by the addition of further small scales is very likely possible at a significantly
lower resolution, it is clear that even the highest resolution current simulations
are not there yet (e.g. Käpylä et al, 2017a; Hotta et al, 2022).

Furthermore, the timestep in such hypothetical DNS of the solar convec-
tion zone is of the order of δt ≈ ℓν/max(cmax

sig ), where cmax
sig is the maximum

signal propagation speed. In anelastic models this is set by the maximum flow
velocity which is of the order of 1 km s−1, whereas in the fully compressible
case this is the sound speed cs, which at the base of the convection zone is
around 200 km s−1. This gives δt = δtdyn ≈ 2 × 10−4 s for anelastic and
δt = δtac ≈ 10−6 s for fully compressible models. In practice, the resolution
is much lower and corresponding estimates for a high-resolution global sim-
ulation with 500 uniformly spaced grid points in radius gives δtac ≈ 2 s and
δtdyn ≈ 10 minutes. The latter is still longer than the convective turnover time

near the surface of the Sun, where τ
r=R⊙
conv ≈ 1 minute. The surface of the Sun

is extremely challenging to be taken into account in a global model due to a
combination of very small length scales and short time scales and the Mach
number approaching unity. Therefore a full Sun simulation requires a numeri-
cal scheme capable of dealing with practically all Mach numbers and multiscale

1https://www.amd.com/en/products/cpu/amd-epyc-9654

https://www.amd.com/en/products/cpu/amd-epyc-9654
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convection. Furthermore, the boundary region where radiative cooling takes
place near the surface is extremely thin, around 10 km, in comparison to the
depth of the convection zone (Kupka and Muthsam, 2017). Typically simula-
tions either do not reach all the way to the photosphere, or consider a shell
reaching to R = R⊙ but with a much lower density stratification than in the
Sun, and the boundary layer near the surface is made artificially thicker to
resolve it numerically.

Another constraint arises due to a widening discrepancy of the timescales
involved when resolution is increased: as was discussed earlier, a simulation
of the Sun needs to cover at least a solar cycle or preferably several cycles to
be considered viable such that the simulated time τsim ≳ τcyc. For the sake of
argument, an acceptable maximum wall-clock time that a simulation is per-
mitted to run to is taken to be a year. This requires that the star in the
simulation has to evolve at least 22 times faster than in real time. However,
when the grid resolution is increased, the timestep in explicit time-stepping
methods decreases in proportion with the grid spacing δx, and the computa-
tional cost of simulation increases with δx4. Even if the numerical scheme has
ideal weak scaling, the time to solution doubles every time the resolution is
doubled, which typically cannot be avoided. This poses stringent constraints
on either the length, or the grid resolution, of simulations targeting global stel-
lar dynamos. The timestep constraints can, to a certain degree, be alleviated
by the use of implicit time stepping methods (e.g. Viallet et al, 2011) or by
the use of local subgrids and timesteps (e.g. Popovas et al, 2022).

A futher complication arises due to the thermal relaxation. In anelastic
models, where the real stellar luminosity is often used, the Kelvin-Helmholtz
time is much longer than the integration times of simulations. However, this
is a worst-case scenario because deep stellar convection zones are nearly adia-
batic which is exploited in the simulation setups. Thermal relaxation can still
take a prohibitively long time if a stably stratified radiative layer is retained
below the convection zone. This issue is sometimes alleviated by adjusting
the radiative conductivity in the overshoot layer below the convection zone;
see e.g. Brun et al (2017). However, this can lead to over- or underestima-
tion of convective overshooting depending when and how such adjustments
are made (Käpylä, 2019). Another possibility is to adjust the thermodynamic
state and fluctuations recursively toward an equilibrium solution Anders et al
(2018, 2020), although this method has yet to gain widespread adoption in
compressible or global 3D simulations.

In fully compressible simulations the timestep would be very short because
it is determined by the sound speed at the base of the convection zone. This
has been circumvented by the reduced sound speed technique (RSST) where
the sound speed is artificially lowered such that the timestep issue is allevi-
ated (e.g. Hotta et al, 2014). Another approach is the enhanced luminosity
method (ELM) where a luminosity that is much higher than in real stars is
used (e.g. Käpylä et al, 2013, 2020), leading to a higher Mach number and
therefore a diminished gap between the acoustic and dynamical timescales,
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as well as a correspondingly shorter Kelvin-Helmholtz time. Given that the
luminosity enhancement is sufficiently large, it is possible to resolve the Kelvin-
Helmholtz timescale using fully compressible MHD equations (e.g. Käpylä,
2023). The cost of this method is that in addition to higher flow velocities, also
the thermodynamic fluctuations are enhanced, and a direct comparison with
observations requires the use of scaling relations. Furthermore, to achieve the
same Rossby number as in a real star with realistic luminosity, the rotation
rate has to be increased in proportion to the Mach number, which would lead
to unrealistically large centrifugal force (e.g. Navarrete et al, 2022).

3.3 Numerical methods and codes

There are a variety of codes solving the MHD equations in spherical shells and
targeting solar and stellar global dynamos. The first and still popular approach
is to adopt the anelastic approximation where the sound waves are filtered out
by neglecting the time derivative in continuity equation. Then it is convenient
to use spherical harmonics to solve for the horizontal dynamics whereas the
vertical discretisation is often done with finite differences or Chebychev poly-
nomials. Codes using this approach include ASH (e.g. Clune et al, 1999; Brun
et al, 2004; Jones et al, 2011; Brun et al, 2022), Rayleigh (Featherstone et al,
2022), and MagIC (e.g. Gastine and Wicht, 2012). Eulag is another anelastic
code but instead of spherical harmonics, it relies on a second-order accurate
multidimensional positive-definite advection transport algorithm (MPDATA)
and implicit time stepping (e.g. Smolarkiewicz and Charbonneau, 2013).

Another popular technique is to use the fully compressible formulation
and using some flavour of finite difference methods. This typically leads to
coordinate singularities at the axis and at the centre of the star, which are
circumvented by either omitting regions near the axis (spherical wedge, cf.
Käpylä et al, 2012; Mabuchi et al, 2015), using partially overlapping grids
(yin-yang grid cf. Hotta et al, 2015), or embedding a spherical star into a
Cartesian cube (star-in-a-box model, cf. Dobler et al, 2006; Käpylä, 2021). The
Mach number issue of fully compressible simulations is dealt with by RSST
and ELM methods that were discussed above. Codes using fully compressible
formulation include the Pencil Code (Pencil Code Collaboration et al, 2021),
R2D2 (Hotta et al, 2015), and the code used in Mabuchi et al (2015). Further
methods include the Dedalus framework which uses spectral methods and is
capable of solving incompressible, anelastic, and fully compressible equations
in varying geometries (Brown et al, 2020; Burns et al, 2020; Anders et al,
2022a), and the Dispatch framework where various solver for compressible
flows are possible and which uses local subdomains and timesteps (Nordlund
et al, 2018; Popovas et al, 2022).

4 Relevant solar and stellar observations

The dynamo simulations discussed in this review aim, ultimately, to capture
the flows and magnetism occurring in real stars. Here, we briefly describe some
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Fig. 2 Solar differential rotation profile Ω/2π as a function of radius and latitude as inverted
from helioseismology using the first 6 years of HMI 72-day analysis. Reddish colors indicating
fast rotation and blueish tones slow rotation (adapted from Larson and Schou (2018) using
the data archived at http://jsoc.stanford.edu/HMI/Global products.html).

of the most pertinent observational constraints on these processes, which also
serve to motivate and guide our work. Perhaps the most obvious characteristics
that any dynamo simulation would hope to match are the Sun’s observed
differential rotation and its periodic cycle of magnetic activity.

In Figure 2, we sample the solar interior rotation profile as revealed by
helioseismology (e.g. Schou et al, 1998). The Sun’s surface differential rotation
– with a fast equator and a slow pole – imprints through the convection zone,
with nearly solid-body rotation in the portions of the radiative zone below
that are accessible to these global-scale inversions. There are two prominent
shear layers – the tachocline near the base of the convection zone and the near-
surface shear layer (NSSL) in the upper portions of the convection zone. The
apparent width of the tachocline in this representation reflects the width of
the inversion kernels used; its true width is thought to be narrower. Note, too,
that although the shear within the convection zone has not spread through the
radiative interior, the average rotation rate of the interior is commensurate
with the average rate of the envelope; since the Sun is continuously losing
angular momentum via its magnetized wind, and so spun more rapidly in the
past, this observation implies some level of coupling between the two regions
(Gilman et al, 1989; MacGregor and Brenner, 1991; Spiegel and Zahn, 1992;
Gough and McIntyre, 1998; Brun et al, 2011; Matt et al, 2015).

Ideally, a simulation would self-consistently capture at least a few key
attributes of this profile: e.g., the overall pole-to-equator shear within the

http://jsoc.stanford.edu/HMI/Global_products.html
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Fig. 3 Solar butterfly diagram of the line of sight surface magnetic field up to Carrington
rotation 2265 (Brun et al, 2020).

convection zone; the fact that isocontours of Ω are more nearly aligned with
radius than they are with the rotation axis, in evident tension with the Taylor-
Proudman theorem (e.g. Miesch et al, 2006); and the existence and properties
of both the NSSL and the tachocline. In practice each of these remain a chal-
lenge, though as discussed later in this review (Section 5.1), the latest 3D MHD
global simulations of solar interior dynamics and angular momentum transport
do manage to capture many of these elements without undue tinkering.

The most striking observational constraints on the magnetism involve its
systematic evolution with space and time, as sampled in the famous “butterfly
diagram.” An example is provided in Figure 3, which shows the longitudinally-
averaged line of sight component of the magnetic field for every Carrington
rotation since 1975 (based on Wilcox, GONG and Solis synoptic map data;
Brun et al, 2020). Strong fields emerge at mid-latitudes and then, over the
course of roughly 11 years, appear progressively nearer the equator; the polar-
ity of these emergent fields is the same for most of the low-latitude events in
the Northern hemisphere, and opposite to that in the Southern; the overall
polarity of the field flips at the end of each 11-year period. There is also a
prominent polar branch of activity, which is at its strongest when the equa-
torial branch is at its ebb; the polarity of this polar branch matches that
of the following equatorward branch. The polarity of the poloidal field thus
reverses when active region emergence is at its maximum. The overall number
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Fig. 4 Top: Ratio of the solar magnetic dipole and quadrupole energies over the last few
cycles (MDI and HMI Data). We note that the quadrupole modes dominate during the max-
imum cycle phase and this has already started for cycle 25 in 2022. This strong quadrupolar
component also explains the time lag between the northern and southern hemispheres that
can reach up to 18 months. Bottom: Sunspot numbers from all data and separately from
northern and southern hemispheres. Adapted from Brun et al (2020).

of sunspots visible over the solar surface rises and falls over the course of the
cycle, in line with the surface distribution of the strongest fields.

On the whole, the Sun’s ordered field exhibits dipole parity throughout
most of the cycle (it is antisymmetric about the equator), but there are periods
near cycle maximum during which the parity is mostly quadrupolar. The rel-
ative amplitudes of the dipolar and quadrupolar modes are shown in Figure 4
over the past few cycles Brun et al (2020). These relations constitute another
powerful constraint on dynamo models. For example, there is evidence that
around the pronounced period of low surface activity known as the Maunder
minimum, the Sun’s observed surface activity was predominantly confined to
one hemisphere, indicating different parity relations; the implications of this
finding for dynamos generally (and grand minima in particular) have been
considered by, e.g., Sokoloff and Nesme-Ribes (1994) and many subsequent
papers.

Very recently, new constraints have begun to emerge from the study of
inertial and Rossby wave modes that propagate within the convection zone.
These toroidal modes have recently been observed in helioseismic maps of near-
surface horizontal flows obtained by HMI aboard SDO (Gizon et al, 2021); see
also Hanson et al (2022) for another recent detection of solar inertial modes.
Though modeling of these modes is still in its infancy (Bekki et al, 2022; Triana
et al, 2022) they appear to hold great promise for constraining aspects of the
convection that would be difficult or impossible to estimate by other means. As
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a first application, Gizon et al (2021) illustrate that these modes constrain the
superadiabaticity and turbulent diffusivity of the deep solar convection zone.

Finally, we turn briefly to observations of other stars. Many aspects of
observational stellar magnetism are treated elsewhere in this volume, and in
other reviews (e.g. Reiners, 2012; Brun and Browning, 2017) so we note only
a few key constraints that must eventually be matched by simulations. The
most celebrated of such constraint is the “rotation-activity correlation,” sam-
pled in Figure 5. In stars with convective envelopes, surface measurements of
magnetic activity first increase with rotation rate, then plateau (“saturate”)
at a certain point. Here we show examples in which activity is measured by
coronal emission (Wright et al, 2018), here including both fully convective
and partially-convective stars (panel a); by chromospheric H-α emission (as
a fraction of the bolometric luminosity) in a large sample of M-dwarfs (New-
ton et al, 2017) (panel b); via (panel c) measurements of the surface magnetic
field strength as revealed by the Zeeman broadening of spectral lines (Rein-
ers et al, 2022); and (panel d) via Zeeman Doppler Imaging (See et al, 2019),
here providing an estimate of the large-scale dipole field observed at the sur-
face. Typically in these studies the influence of rotation is characterized via a
simple estimate of the Rossby number where the convective turnover time is
typically based on simple empirical relations that work well for main-sequence
stars (e.g. Noyes et al, 1984). When viewed in this way, many different types
of stars – including those with and without a stable radiative region – appear
to exhibit the same basic relationships. Comparisons of young and evolved
main-sequence stars also suggest a similar level of activity as function of Ro
in terms of Ca II H&K emission, provided that the convective turnover time
is an outcome of 1D stellar models (Lehtinen et al, 2020).

The rotational velocity of a solar-like star changes systematically over time,
as it loses angular momentum through a magnetised wind, so over the course
of its life it will trace a variety of positions on this rotation-activity corre-
lation. Indeed, measurements of rotation rate are used in “gyrochronology”
as proxies for age, because many stars are found to exhibit a common, tight
relation between spin rate and time – the so-called Skumanich law; see dis-
cussions in Skumanich (1972), Soderblom (1983), and Barnes (2003). Lately
there have been some indications that this relationship may break down at
late ages (e.g. van Saders et al, 2016), which may provide additional con-
straints on the dynamo for old stars (e.g. Metcalfe and van Saders, 2017). In a
related vein, there is some evidence for enhanced stellar activity in a subset of
slowly-rotating stars, which some authors have suggested may be linked to the
presence of strong anti-solar differential rotation (Brandenburg and Giampapa,
2018). Global dynamo simulations seem to capture this effect; see Karak et al
(2015), Warnecke and Käpylä (2020), and Brun et al (2022).

Together, these observations of the Sun and other stars constitute powerful
constraints that models would hope to satisfy. In the following sections, we
will examine the extent to which they actually do so.
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Fig. 5 Relations between rotation rate (quantified by the Rossby number) and magnetic
activity, sampled by several different observational methods. (a) X-ray emission (normalized
to the bolometric luminosity) for a sample of both fully and partially convective stars (Wright
et al, 2018); (b) a measure of chromospheric Hα emission, normalised to the bolometric
luminosity and relative to that in inactive stars, in a sample of M-dwarfs (Newton et al,
2017) (©AAS. Reproduced with permission); (c) average surface magnetic field as measured
by Zeeman broadening of spectral lines (Reiners et al, 2022) (©ESO. Reproduced with
permission); (d) Zeeman Doppler imaging estimates of dipole component of surface magnetic
field (See et al, 2019) (©AAS. Reproduced with permission).

5 Simulations of solar and stellar dynamos

5.1 Convection and dynamo in the current Sun

In addition to the fundamental numerical restrictions discussed above, sim-
ulations of the current Sun are challenging due to the possible proximity of
the transition from solar-like to anti-solar differential rotation. This transition
occurs around Ro ≈ 1 (e.g. Käpylä et al, 2011a; Gastine et al, 2014; Brun et al,
2017) and current simulations of the Sun appear to lie close to this in param-
eter space. Simulations with the nominal solar luminosity and rotation rate
land predominantly in the anti-solar regime (e.g. Käpylä et al, 2014), which is
one of the manifestations of the convective conundrum (O’Mara et al, 2016),
or the lower than expected velocity amplitudes and Rossby number in the
Sun in comparison to theoretical estimates and simulations, which is discussed
in more detail elsewhere (e.g. Hanasoge et al, 2016). Therefore simulations
targeting the Sun often resort to lowering the Rossby number artificially to
obtain a solar-like differential rotation profile. This is most often done by sup-
pressing the convective velocity by enhancing radiative diffusion (e.g. Käpylä
et al, 2014; Fan and Fang, 2014; Hotta et al, 2016; Noraz, 2022), lowering the
luminosity (e.g. Hotta et al, 2015; Guerrero et al, 2022), or by increasing the
rotation rate.
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The importance of reproducing the solar interior rotation lies in the fact
that the dynamo process crucially relies on flows of various scales to main-
tain the observed magnetic field. At the very least, the large-scale flows are
employed by all of the currently predominant solar dynamo models (Charbon-
neau, 2020). Furthermore, it is also likely that turbulent effects, such as an α
effect due to helical convection-driven turbulence, are important in the dynamo
process. This highlights the importance of accurate modelling of convection,
essentially necessitating that the solar velocity field has to be sufficiently well
reproduced first before one should expect success in reproducing the dynamo.
An important step in this is the identification of the relevant force balances
that need to be reproduced in simulations. Following such an approach, a
path in parameter space may be found that leads to solar-like results with
feasible numerical cost. Such “path approach” is quite commonly used now in
geodynamo modelling (Aubert et al, 2017; Aubert and Gillet, 2021).

The convective conundrum is arguably the greatest obstacle in achieving
the goal of simulating the solar dynamo successfully. Several ideas have recently
been invoked to alleviate the discrepancy between models and reality. One of
these ideas is that this is a manifestation of rotationally constrained convection
in the interior of the Sun. In this scenario the maximum scale of convection in
the deep parts of the solar convection zone is not giant cells, as is expected from
mixing length models, but it matches instead that of the supergranulation,
which is also detected from surface observations (Featherstone and Hindman,
2016a; Vasil et al, 2021). While simulations of rotationally constrained con-
vection do produce smaller convective scales that become smaller as rotation
becomes more rapid (e.g. Viviani et al, 2018), the main contribution to differ-
ential rotation in such models is still due to giant cell convection (e.g. Käpylä,
2023) or thermal Rossby waves that have not yet been detected in the Sun.

Another idea that has gained popularity recently is that the deep parts
of the solar convection zone can be weakly stably stratified. This is thought
to result from strong driving of convection in the near-surface layers, whence
plumes of cool low entropy material plough through the whole convection zone
and deep into the stably stratified layers below. Such idea of cool entropy
rain was put forward by Spruit (1997) and later incorporated into a modified
mixing length model by Brandenburg (2016). In the extreme versions of these
models only a very thin layer (down to a few Mm) near the surface of the
convection zone is Schwarzschild unstable and the rest of the convection zone is
weakly subadiabatic and mixed by the entropy rain. Such effects were explored
in 3D simulations by Nelson et al (2018) by means of a boundary condition
consisting of localised cooling patches. Although non-rotating simulations often
find relatively deep subadiabatic layers (e.g. Tremblay et al, 2015; Hotta, 2017;
Käpylä et al, 2017b), their effect in global simulations appears to be weak
(Käpylä et al, 2019; Viviani and Käpylä, 2021). This could also be due to the
modest resolutions and supercriticality of convection in those studies.

Furthermore, the influence of the thermal Prandtl number has also recently
been studied. In particular, several studies have concentrated on cases where
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the effective Prandtl number is greater than unity (e.g. O’Mara et al, 2016;
Bekki et al, 2017; Karak et al, 2018). This was motivated by the observa-
tion that the overall velocities are decreased in high-Pr convection. However,
this also coincides with more effective downward flux of angular momentum,
exacerbating the problems related to anti-solar differential rotation Karak
et al (2018). Another recent study Käpylä (2023) confirmed these ideas and
showed that the Prandtl number dependence is relevant in the regime Pr ≳ 1,
whereas for Pr ≲ 1, the parameter regime relevant for the Sun, no statistically
significant dependence was detected.

Finally, the role of magnetism in shaping the solar rotation profile is also
a viable option to explain the convective conundrum. Whereas early forays
into this field yielded somewhat contradictory results with some studies find-
ing essentially no dependence on magnetic fields (Karak et al, 2015), others
reported a flip from anti-solar to solar-like differential rotation (Fan and Fang,
2014; Simitev et al, 2015). All of these simulations were made at relatively
modest magnetic Reynolds numbers, and it is likely that a SSD was not
excited in these models. The recent high-resolution implicit large-eddy simu-
lations (iLES) (Hotta and Kusano, 2021; Hotta et al, 2022), have reached a
regime where small-scale magnetic fields are generated throughout the convec-
tion zone and turn a hydrodynamically anti-solar run to a solar-like solution
at the highest resolution. Somewhat worryingly, these simulations have yet
to show convergence as a function of resolution such that the flows at large
scales changes significantly even between the two largest resolutions. Recently,
Käpylä (2023) reported that it is easier to excite solar-like differential rotation
for higher ReM from simulations with explicit diffusivities where ReM exceeded
the threshold for SSD. However, this effect is much less drastic than in the
iLES simulations.

The radial shear in the solar convection zone occurs predominantly in the
boundary layers which are difficult to incorporate in global simulations. The
near-surface shear layer is thought to be generated in the weakly rotationally
constrained small-scale convection in the outermost parts of the solar convec-
tion zone (e.g. Kitchatinov, 2016) or due to gyroscopic pumping effects (e.g.
Miesch and Hindman, 2011). Capturing this in global simulations is challenging
because a very high resolution is required to capture the near-surface small-
scale convection resulting from a steep decrease of fluid density. First such
simulations were presented by Hotta et al (2015), who were able to capture
some aspects of the NSSL. However, these simulations were hydrodynamic and
no corresponding dynamo solutions have been presented so far. The NSSL has
also been suggested to shape the global solar dynamo Brandenburg (2005), but
no direct evidence supporting or refuting this theory is currently available.

The other boundary layer at the interface of the convective and radiative
layers, the tachocline, is perhaps even more challenging to capture in simula-
tions. The main challenge is that the solar tachocline is very thin (certainly
less than five per cent of solar radius, but likely much less), and it has been
confined now for five billion years. Estimates of radiative spreading for the
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Sun suggest that the tachocline should be much thicker at the current age
of the Sun so there has to be a mechanims preventing this. Several magnetic
scenarios have been invoked to explain this, including a dipolar fossil field in
the radiative core or a cyclic dynamo in the convection zone. Some current
simulations do exhibit tachocline-like features, but they are spreading into the
radiative core at rates that are much higher than expected for the Sun (e.g.
Brun et al, 2011, 2017). Furthermore, iLES models also produce tachoclines
at relatively low resolutions, although their confinement mechanism is yet to
be understood (Guerrero et al, 2013, 2016, 2022). In all of the aforementioned
simulations the diffusivities in the radiative interior were either explicitly or
implicitly greatly reduced. In apparent contradiction to these models, Matil-
sky et al (2022) were able to obtain a relatively thin tachocline and essentially
rigidly rotating radiative core in a simulation where the diffusivities were not
decreased but which housed a cycling non-axissymmetric dynamo in the con-
vection zone. Furthermore, this model has also strong horizontal flows in the
radiative interior. The actual process of tachocline confinement is still unclear
in this case, although it does share some characteristics with the cyclic dynamo
confinement process suggested by Forgács-dajka and Petrovay (2001); see also
Barnabé et al (2017).

Given the difficulties in reproducing the solar flows, it is then hardly sur-
prising that dynamo simulations have had a hard time reproducing the solar
large-scale magnetism. The most severe issue is the difficulty in obtaining
solar-like equatorward migration of activity belts in simulations with solar-like
differential rotation. Nevertheless, several simulations have appeared showing
equatorward migration and which capture many aspects of solar observa-
tions. For example, Käpylä et al (2012) reported equatorward migration from
spherical wedge simulations that were later shown to be in accordance with
a Parker–Yoshimura dynamo wave resulting from a mid-latitude minimum of
angular velocity which is not present in the Sun (Warnecke et al, 2014, 2018).
A similar mid-latitude dip is seen also in the equatorward migrating solutions
of Augustson et al (2015). Further examples of equatorward propagating solu-
tions have been reported by Duarte et al (2016), Matilsky and Toomre (2020),
Strugarek et al (2017, 2018), and Brun et al (2022); see also Figure 6. The lat-
ter authors argued that a non-linear interplay between the magnetic fields and
differential rotation can lead to solar-like long period cyclic dynamos. Another
recent example shows equatorward migration near the surface but poleward
migration at depth in a star-in-a-box model (Käpylä, 2022), where a spherical
star is embedded into a Cartesian cube. In such models the boundary of the
star is immersed into the domain and, in theory, allows for a more realistic
magnetic boundary condition. This was shown to be important in that if the
exterior was made a poor conductor, the global dynamo solution changed from
oscillatory to quasi-static. This confirms earlier results of (Warnecke et al, 2013,
2016), where the influence of a simplified coronal layer as upper boundary on
the flow and magnetic field evolution was studied.
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Fig. 6 Butterfly diagrams from Augustson et al (2015) (top), Matilsky and Toomre (2020)
(middle; ©AAS. Reproduced with permission) and Käpylä (2022) (bottom).

These simulation results and their interpretation add to the ongoing debate
regarding the location and dominant physical mechanisms of the solar global
dynamo. The current state of affairs is particularly clearly manifested by the
wide variety of mean-field models that have been put forward to explain the
solar cycle. A popular class of models include flux-transport (e.g. Dikpati
and Charbonneau, 1999) and Babcock-Leighton (e.g. Cameron and Schüssler,
2017) dynamos where a minimal set of physically plausible ingredients, such as
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differential rotation and meridional circulation and the decay of active regions
near the solar surface are taken into account. These models typically rely on
buoyantly rising flux ropes (e.g. Caligari et al, 1995) that are the result of
strong shear in the tachocline, and the turbulent flows in the convection zone
play only the role of turbulent diffusion. On the other hand, distributed tur-
bulent dynamos take into acount a variety of effects that arise in mean-field
electrodynamics and assume magnetic field generation throughout the con-
vection zone (e.g. Brandenburg et al, 1992; Käpylä et al, 2006; Pipin and
Kosovichev, 2013). The obvious drawback of mean-field models is that the
individual effects can be adjusted which leads to a great temptation to fine-
tune the models. The main advantage of 3D simulations is that this freedom is
greatly reduced (although by no means completely eliminated). A major part
of the debate regarding the solar dynamo revolves around the relevance of the
tachocline.

Unfortunately the advent of 3D simulations with and without tachoclines
has not provided conclusive evidence one way or the other. For example,
Guerrero et al (2016) studied both cases with Eulag simulations and found
that dynamos operating solely in the convection zone had shorter cycles
and intermittent turns-off of activity. On the other hand, dynamos operat-
ing at tachocline levels result in long, coherent, magnetic cycles. Whereas the
dynamos operating in the convection zone are understood as distributed αΩ
dynamos, those operating at the tachocline may be of α2Ω type, with the α
effect generated by instabilities that extract energy from the magnetic field
(e.g., Tayler or buoyancy instabilities; see Guerrero et al, 2019). Furthermore,
simulations with (Käpylä, 2022) and without (Käpylä et al, 2012; Warnecke,
2018) tachoclines from other models produce cyclic dynamos that share some
characteristics of the solar cycle. A general conclusion is that long cycles appear
to be generated at depth while shorter ones have their origin near the surface
(e.g. Käpylä et al, 2016).

Apart from the non-linear dynamo invoked by Strugarek et al (2017) and
Brun et al (2022), another physical mechanism proposed to be responsible
for the equatorward migration include helicity inversion in the deep parts of
the convection zone. This is typically encountered in overshoot regions below
the convection zone (e.g. Ossendrijver et al, 2001). However, a much deeper
helicity inversion was obtained in simulations by Duarte et al (2016), and
which resulted in a change of the propagation direction of the dynamo wave in
accordance with the Parker-Yoshimura rule. In these simulations convection
was, however, inefficient in the bulk of the convection zone which is not the
situation in the solar convection zone. Such reversed helicity configuration
can perhaps arise if much of the convection zone is stably stratified as in the
proposed entropy rain scenario, but there is currently no simulation that has
produced this.

A yet further possibility is that the solar dynamo is driven predominantly
by the kinetic helicity as in classical α2 dynamos that can lead to equatorward
migration if the α effect has a sign change at the equator (Baryshnikova and
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Shukurov, 1987; Rädler and Bräuer, 1987). Such helicity profile is expected due
to symmetry arguments theoretically, and is a standard outcome in convection
simulations (e.g. Brun et al, 2004). The equatorward migrating dynamo wave
has been demonstrated by three-dimensional forced turbulence simulations
(e.g. Mitra et al, 2010; Warnecke et al, 2011), but no definitive evidence from
convection exists.

There have also been attempts to capture the long term modulations in
dynamo cycles from simulations. These studies have extended the simulations
to cover several tens of cycles corresponding to up to a millenium in solar time
(e.g. Passos and Charbonneau, 2014; Augustson et al, 2015; Käpylä et al, 2016).
These simulations revealed modulation of activity and occasional periods of
low activity reminiscent of grand minima (Augustson et al, 2015; Käpylä et al,
2016). Such grand minima states can arise due to an interplay of symmetric and
anti-symmetric dynamo modes (e.g. Tobias, 1997) or stochastic fluctuations
in the buoyancy driving or in the conventional α effect (e.g. Ossendrijver,
2000; Brandenburg and Spiegel, 2008). However, the modulations and minima
in simulations are clearly weaker compared to the solar observations. This is
perhaps not too surprising because to run these simulations sufficiently long
they need to be done at modest resolutions and cannot therefore be highly
supercritical.

5.2 The Sun at different ages

During its 4.5 billion years of evolution, the Sun has experienced various
changes in its internal constitution, and therefore, the extent of its convection
zones and resulting large-scale flows and magnetic fields. In this section we
describe numerical simulations of the Sun, or Sun-like stars, corresponding to
these evolutionary stages from the formation to the current age.

5.2.1 The pre-main sequence phase

Significant structural changes occurred early in the solar evolution during the
pre-main sequence (PMS) stage, as the newly formed object is still contract-
ing. Objects at this stage, with masses similar to the solar mass, are called
TTauri stars. While the temperature at the center of the protostar is still
increasing, the opacity of the gas is high and the transport of energy occurs
entirely due to convection. The actual rotation rate of the Sun in the TTauri
phase is unknown, but models can be constructed to characterise it (e.g. Ahuir
et al, 2020). Moreover, observations of open clusters have found distributions
of rotational periods between roughly 1 and 10 days for solar-like stars with
ages around 3 Myrs (see e.g., Gallet and Bouvier, 2013).

The large-scale magnetic fields of TTauri stars are predominantly dipolar
with field strengths of the order of kG (e.g. Johns-Krull, 2007). Fields with
a similar topology are also often observed in low mass, fully convective and
rapidly rotating M dwarfs (e.g. Kochukhov, 2021). Therefore, despite the dif-
ference in mass, simulations of TTauri stars and low-mass M dwarfs are, to
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some extent, comparable. However, the latter will be discussed in detail in
Section 5.3.3. Following the evolution further, the protoplanetary disc disap-
pears after about 106 − 107 years since the beginning of the collapse. The
protostar continues to contract, and therefore its angular velocity increases.
Simultaneously, the star starts to develop a radiative core. Both, the angular
velocity and the radiative zone increase before the star reaches the zero age
main sequence (ZAMS) after about 5 × 107 years. As mentioned above, dur-
ing the TTauri phase the magnetic field of a solar-like star is mainly dipolar.
Observations suggest increasing complexity of the magnetic topology once the
star develops a radiative zone (Gregory et al, 2012).

There are currently only a few simulation studies that specifically target
dynamos in the TTauri and PMS phases of stellar evolution. One such example
is the study of Zaire et al (2017) who considered models in the fully and par-
tially convective phases of PMS evolution. While the differential rotation was
more pronounced in the latter evolutionary phase, the resulting quasi-steady
predominantly quadrupolar magnetic field configurations were quite similar. A
more complete study was performed by Emeriau-Viard and Brun (2017), where
five epochs between the TTauri stage and the ZAMS were studied for a 1M⊙
star. Each epoch is characterised by a diffrent internal structure and rotation
period. The sequence of simulations shows a decreasing dipole contribution
to the magnetic field as a function of age. However, even in the early fully
convective phase, the dipole constitutes only about ten per cent of the total
magnetic energy. In this case the azimuthally averaged large-scale magnetic
field is cyclic with with poleward migration, reminiscent of the simulations of
fully convective M dwarfs (e.g. Brown et al, 2020; Käpylä, 2021). The transi-
tion between dipole-dominated and multipolar dynamos is discussed in more
detail from the perspective of simulations in Section 5.3.3.

5.2.2 Main sequence Sun-like stars: rotational evolution of
differential rotation and dynamos

On the main sequence, the rotation rate of stars decreases following the obser-
vational Skumanich (1972) law, associated to the loss of angular momentum
due to magnetized stellar winds. There have been some speculative ideas about
the origin of the non-saturated and saturated regimes of the rotation-activity
relationship of stars (e.g. Kawaler, 1988; Matt et al, 2015). For instance, Wright
et al (2011) suggested that a turbulent (interface) dynamo is at work in rapidly
(slowly) rotating stars. However, the fact that fully convective stars also follow
the power law for slow rotation (Wright and Drake, 2016) suggests the possi-
bility of a general dynamo theory for all main sequence stars. Nevertheless, to
the date, there is no agreement about this theory. One of the main hindrances
is the difficulty in observing differential rotation as a function of Ro (e.g.
Reinhold and Arlt, 2015; Benomar et al, 2018), but a new approach has been
recently proposed by Noraz et al (2022) using Kepler data. Equally difficult
is obtaining unambiguous measurements of dynamo cycle periods and system-
atics as a function of rotation as already discussed. Numerical simulations, on
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the other hand, can be performed at arbitrary rotation rates corresponding to
different ages of the star. Below, we summarize the relevant findings for the
differential rotation and dynamos for a solar mass star from its youth to the
present age and beyond.

The Rossby number dependence of large-scale mean flows has been stud-
ied in various papers (e.g. Ballot et al, 2007; Käpylä et al, 2011b,a; Guerrero
et al, 2013; Gastine et al, 2014; Featherstone and Miesch, 2015; Brun et al,
2017). These studies considered different rotation rates for roughly the same
structural model resembling the solar interior. Irrespective of the numeri-
cal scheme, the results confirmed that the relative radial differential rotation
∆Ω/Ω changes from positive (solar-like differential rotation), for small Ro, to
negative (anti-solar) for large Ro (see left panel of Figure 7, adapted from
Gastine et al, 2014), with the transition happening near Ro = 1. In Viviani
et al (2018), the modulus of the absolute differential rotation was also found
to decrease rapidly with the rotation rate for Ro ≲ 0.1; see right panel of
Figure 7 and Figure 8 of Brun et al (2022). This decrease, however, can be
due to low supercriticality of convection at such low Ro. General consensus
from simulations is that for sufficiently rapid rotation the differential rotation
is negligibly small. This has implications on the theoretical interpretation of
dynamos in the classical mean-field dynamo framework; see Section 6. Another
characteristic is the appearance of non-axisymmetric convective modes, or
active nests, in the rapidly rotating regime, Ro ≪ 1 (Brown et al, 2008). Such
non-axisymmetric convection has recently been suggested to be the origin of
stellar active longitudes (Bice and Toomre, 2022). Regarding the structure of
convection, it is evident from all simulations that rotation breaks the broad
convective cells observed in non-rotating or slowly rotating simulations. Quan-
titatively, Featherstone and Hindman (2016a) found that the harmonic degree
where the spectrum has a maximum, ℓpeak, scales with the Rossby number as

ℓpeak ∼ Ro−1/2 (see also Viviani et al, 2018). This means that the faster the
rotation, the smaller the scales where most of the kinetic energy is contained.
This applies to regions of the convection zone where Ro ≲ 1; in the near-
surface layers Ro ≫ 1 even in the most rapidly rotating stars, and the size of
photospheric convection cells is likely independent of stellar rotation.

As discussed in Section 4, the rotation of stars slows down due to magnetic
braking as they age. The young Sun was therefore a much faster rotator than
what it is today. Simulations of rapidly rotating (Ro ≲ 0.1) young solar-like
stars have been performed by several groups using various numerical methods.
Quite surprisingly, the results in this parameter regime are rather inhomoge-
neous: there are three distinct dynamo modes that have been reported from
such studies. First, there is the large-scale dipole-dominated solutions (e.g.
Gastine et al, 2012; Yadav et al, 2015b; Zaire et al, 2022) that are reminis-
cent of the geodynamo and those of Saturn and Jupiter. Another outcome
is that the large-scale magnetic fields are dominated by a non-axisymmetric
m = 1 mode that often propagates either in retro- or prograde fashion (e.g.
Cole et al, 2014; Yadav et al, 2015b; Viviani et al, 2018; Viviani and Käpylä,
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Fig. 7 Left: Measure of the radial differential rotation at the equator for several studies in
the literature. Adapted from Gastine et al (2014). Right: Modulus of the absolute latitudinal
differential rotation from simulations of a solar-like star Viviani et al (2018), where Ω̃ is the
rotation rate normalized by the solar rotation (©ESO. Reproduced with permission). The
dotted line corresponds to the transition of anti-solar to solar-like differential rotation at
Ro ≈ 0.35 and the dashed line separates the two regimes of differential rotation dependence
at Ro ≈ 0.08.

2021; Navarrete et al, 2022). Finally, some simulations produce predominantly
axisymmetric but multipolar large-scale fields in such rapidly rotating setting
(e.g. Strugarek et al, 2018). It is unclear why there is such a variety in mag-
netic field topologies in this regime. A possible cause is that the dynamo is
sensitive to relatively minor differences in the boundary conditions (see, e.g.
Warnecke et al, 2016) and/or other details of the simulation setups (Orvedahl
et al, 2021).

Two further regimes of dynamos can be distinguished on either side of
transition between solar-like to anti-solar differential rotation. When rotation is
rapid enough such that a solar-like differential rotation is produced, the large-
scale fields are predominantly axisymmetric and often cyclic (e.g. Brown et al,
2010; Ghizaru et al, 2010; Käpylä et al, 2012; Nelson et al, 2013; Augustson
et al, 2015; Warnecke, 2018; Matilsky and Toomre, 2020). As mentioned above,
in some cases this behavior continues to much more rapid rotation whereas in
others non-axisymmetric or dipolar dynamos modes take over. When rotation
is slow enough and the differential rotation is anti-solar, the magnetic fields
are predominantly axisymmetric and quasi-steady (e.g. Käpylä et al, 2017a;
Strugarek et al, 2018; Warnecke, 2018). In the transition between the two
regimes, the dynamo may excite the two modes simultaneously (Viviani et al,
2019). The appearance of cycles appears to be related to the strength of the
differential rotation such that long decadal cycles, such as in the Sun, appear
in a relatively narrow range of Rossby numbers where the differential rotation
is strong (Warnecke and Käpylä, 2020; Brun et al, 2022, see the left panel of
Figure 8).

Regardless of the commonalities between different modeling approaches,
the simulated magnetic cycle seem to be sensitive to the subtleties of the mod-
els, and there is no clear agreement regarding the scaling of cycle periods as a
function of rotation as can be seen in the right panel of Figure 8 compiling the
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results of Strugarek et al (2018), Warnecke (2018), Guerrero et al (2019), and
Käpylä (2022). Furthermore, none of the scaling laws from simulations seem
to unambiguously agree with the observed cycles that are sometime grouped
in activity branches with Prot/Pcyc ∝ Coα, where α > 0 (e.g. Saar and Bran-
denburg, 1999; Brandenburg et al, 2017). It is worth mentioning, however,
that the observational results may also present problems and, depending on
the used analysis techniques, the distinct activity branches may not even exist
(e.g. Bonanno and Corsaro, 2022).

As shown in Figure 7 (left), the amplitude of the differential rotation has
maxima on either side of the solar-like to anti-solar transition. The strong
shear in the anti-solar regime has been speculated to lead to enhanced mag-
netic activity (Brandenburg and Giampapa, 2018). While this has not been
systematically studied, some evidence of enhanced magnetic energy for anti-
solar differential rotation has been found in simulations (e.g. Karak et al,
2015; Warnecke and Käpylä, 2020; Brun et al, 2022). A much more unam-
biguous observational fact is that the stellar magnetic activity and magnetic
fields saturate for Ro ≲ 0.1 (e.g. Reiners et al, 2022, see also Section 4). This
does not appear to happen in simulations, where the magnetic energy typi-
cally increases with rotation even for the fastest rotation considered so far (e.g.
Warnecke and Käpylä, 2020). Furthermore, the ratio of magnetic to kinetic
energy increases roughly proportional to Ro−1 (Augustson et al, 2019; War-
necke and Käpylä, 2020) in accordance with Magneto-Archimedean-Coriolis
(MAC) balance. Brun et al (2022) showed that the large-scale surface fields fol-
low even a steeper increasing trend ∝ Ro−1.4 with decreasing Rossby number.
However, this is consistent with stellar observation in the magnetically non-
saturated regime (See et al, 2019; Brun et al, 2022). Nevertheless, it is unclear
why the simulations deviate from observations in that they do not show indi-
cations of saturation when the Rossby number is decreased. It is plausible that
missing surface physics, such as the lack of spot formation in the simulations
contributes to this issue.

5.3 Stars other than the Sun

Most stars are not like the Sun. A large majority (in our galaxy, anyway) are
M dwarfs, which are less massive than the Sun, considerably less luminous
(ranging down to about 10−3 L⊙), and in some cases convective throughout
their interiors. At the other end of the H-R diagram, stars more massive than
the Sun have convective cores and predominantly stable (radiative) envelopes,
accompanied in some cases by thin near-surface convection zones. These high-
mass stars can be thousands of times more luminous than the Sun; thus across
the main sequence, luminosities vary by a factor of more than a million. These
enormous variations in luminosity, and in the geometry and stratification as
well, must influence the convection and dynamo action occurring in these
stars. In this section, we therefore briefly describe our current understanding of
dynamo action in main-sequence stars at lower and higher masses. Our focus
here is on what has been revealed by basic theory and by simulations.
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Fig. 8 Left: Summary of the fraction of differential rotation energy from total kinetic energy
as a function of Ro from the simulations of Strugarek et al (2017) and Brun et al (2022). The
colours of the symbols indicate the type, or the lack of, magnetic cycles. Adapted from Brun
et al (2022). Right: Comparison of the ratio of the rotation period and the cycle periods as a
function of the Coriolis number (∝ Ro−1) from the studies of Strugarek et al (2018) (blue),
Warnecke (2018) (red), Guerrero et al (2019), and Käpylä (2022). Estimated location of the
Sun is indicated by the symbol ⊙. Adapted from Käpylä (2022).

From the standpoint of dynamo theory, stars vary not just in their luminos-
ity but also their rotation rate, their geometry, their stratification, and their
microphysics. For example the core of a massive star is only weakly stratified,
whereas an M dwarf (or the convective envelope of a Sun-like stars) is much
more strongly stratified. The microscopic diffusivities vary in such a way that
PrM is very small in many stellar convection zones but greater than unity in
some (e.g. Augustson et al, 2019; Jermyn et al, 2022). Many of these variations
are intertwined. For example, the influence rotation has on the convection is
typically encapsulated by some version of the Rossby number Ro ∼ Prot/τconv;
because τconv depends on the flow velocity, the rotational influence can vary
from star to star (and with radius within a given star) even if the rotation
period is constant.

Faced with the bewildering array of possible variations in all of these param-
eters, would-be simulators tend to try one of two different approaches. One is
to focus on a particular physical effect – stratification, for example – and try
to elucidate how this affects convection, differential rotation, and magnetism,
typically in an idealized setting (e.g., a Cartesian layer). Another is to attempt
to model a given astrophysical object in some detail, adopting (e.g.) spherical
coordinate systems and stratifications (of density, temperature, or entropy)
that mimic those in a 1D stellar model. In neither approach is it possible for
simulations to approach the actual parameter regimes attained in real stars,
although some balances can be recovered that help in understanding, e.g. the
type of differential rotation that occur in real stars. Before diving into a “by
object” discussion, we turn first to a high-level overview of the effects of rota-
tion, stratification, and geometry on dynamo action in general. Then we turn
to summaries of how these effects play out in specific types of stars.
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5.3.1 Effects of rotation, stratification, and geometry in
stellar models

All stars rotate, all have some level of density stratification, and all convect
in a spherical geometry. Here we provide a very brief overview of how each
of these effects likely influence the flows and magnetism. Perhaps the clearest
message from the last few decades of research on convection and dynamo
action is, “rotation matters a lot.” It affects the convective flows, it affects
their transport of heat and angular momentum, and it affects the magnetism
these flows can build. Some of these effects (e.g., how rotation affects magnetic
field morphology) are understood only qualitatively, whereas for others (e.g.,
how it affects heat transport) there is now a more quantitative picture.

To begin, consider the influence of rotation on the convective flows in
the absence of magnetism. It is well-known that rotation tends to stabilise a
system against convection, increasing the critical Rayleigh number for onset
(Rac ∝ Ek−4/3, with Ek the Ekman number defined previously), while the
most unstable wavenumber shifts to higher wavenumber (k) with more rapid
rotation rate (lower Ek) (e.g. Chandrasekhar, 1961). (Less obviously, consider
a numerical simulation not too far from onset – more specifically, one for which
“diffusion free” scalings do not yet apply – with, for example, a fixed heat
flux or temperature contrast, and also some fixed rotation rate. In this sys-
tem changing the numerical diffusivities – or in an implicit LES simulation
changing the resolution – will also affect the rotational influence, via changing
Ek, and so also the flows.) In a global spherical geometry, whenever rota-
tion plays a major role in the dynamics the most prominent convective modes
close to onset are wave-like convective rolls, aligned with the rotation axis and
arising from the conservation of potential vorticity, variously called “thermal
Rossby waves,” “Busse columns,” or “banana cells” depending on the com-
munity (see, e.g. Busse, 1970; Gilman, 1977; Busse, 1983; Featherstone and
Hindman, 2016a; Bekki et al, 2022). The systematic prograde tilt of these cells,
and the associated Reynolds stress, plays a major role in redistributing angular
momentum in most global-scale simulations of stellar convection; the differen-
tial rotation is then also a strong function of rotation rate (Rossby number),
as summarized elsewhere (e.g. Gastine et al, 2014).

The heat transport by the convection is also strongly influenced by rota-
tion: for a given fixed heat flux, the convection tends to become “less efficient”
as the rotation rate increases – that is, it requires a larger entropy gradient
to carry the same flux (see, e.g., discussions in Stevenson, 1979; Aurnou et al,
2020). Quantitatively, several theoretical approaches supported by numeri-
cal simulations – including appeals to a balance between Coriolis, inertial,
and buoyancy forces (so-called “CIA balance”) (e.g Vasil et al, 2021), “rotat-
ing mixing length” theory (Stevenson, 1979; Barker et al, 2014; Currie et al,
2020) asymptotic theory at low Rossby number (Julien et al, 2012) – yield
the same diffusion-free dependence of key quantities, like the temperature gra-
dient, when rotation is rapid enough. In these models the amplitude of the
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convective motions goes down at higher rotation rates, the temperature gradi-
ent goes up, and the typical wavenumber of the flow increases, with important
consequences for the dynamo.

The dependence of dynamo action itself on rotation is less quantitatively
understood, though it is still possible to make some broad statements that are
supported by theory and simulation. When rotation is dynamically significant,
it is widely thought to affect the strength and morphology of dynamo-generated
magnetic fields as discussed in more detail in Section 5.2.2. (see also, e.g.,
Schrinner, 2013; Augustson et al, 2019; Orvedahl et al, 2021). Furthermore,
because the envelope convection zones of low-mass stars are strongly stratified
(in density and temperature), many authors have also sought to understand
what role this stratification plays in determining various properties of the flows
and magnetism. We mention here only a few. Broadly, the presence of den-
sity stratification breaks the up-down symmetry in Boussinesq systems, so it
changes the convective dynamics – and also presumably the magnetism – in a
variety of ways. Strongly stratified systems tend to have strong, narrow down-
flows and broader, weaker upflows (e.g. Hurlburt et al, 1984; Cattaneo et al,
1991); their energy dissipation budget is very different (e.g., Hewitt et al, 1975;
Currie and Browning, 2017); they can establish different profiles of kinetic
helicty (Duarte et al, 2016) and may drive different types of zonal flows (e.g.,
Glatzmaier et al, 2009). If diffusion-free scalings (like mixing-length theory)
apply, or simply on dimensional grounds, the velocity of the convective flows
is expected to vary in amplitude across a stratified convection zone, in a way
not found in Boussinesq systems. This basic fact has profound consequences
for the convective dynamics in a star like the Sun, since we then expect regions
near the photosphere (which are very low-density) to undergo such rapid con-
vective motions that their Rossby number is enormous (i.e., the influence of
rotation is negligible there); meanwhile the deeper flows must be influenced by
rotation, at least within some finite distance of the transition to the radiative
interior. The presence of density stratification may make it harder to sustain a
strong global-scale dipole in some regimes (e.g., Gastine et al, 2012), but it is
also clear that highly ordered fields are still realizable even when the stratifi-
cation is strong (see discussions in Raynaud et al 2015; Menu et al 2020; Zaire
et al 2022).

Relatively little work has directly addressed the influence of the geometry
of the convection zone, while keeping other factors constant. We briefly note
only a few specific results. Goudard and Dormy (2008) showed that, in rotating
Boussinesq MHD simulations with fixed temperature boundaries, changing
the aspect ratio of the domain (i.e., changing the depth of the convection
zone) had a strong effect on the nature of their dynamo solutions. In deep
domains, they found steady “Earth-like” dipolar solutions; if the convection
zone was gradually made thinner, they found a transition to “Sun-like” dynamo
wave solutions. Separately, Camisassa and Featherstone (2022) have recently
investigated the role of geometry in determining the Reynolds stresses – and
hence the differential rotation – in anelastic simulations of rotating convective
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envelopes. They argue that the well-known transition from solar to anti-solar
differential rotation occurred when columnar convective structures attained a
diameter roughly equivalent to the shell depth. In the sections that follow, we
explore how these different dynamical trends play out in models of specific
stars.

5.3.2 Dynamo action in high-mass stars: convective cores
and radiative envelopes

Massive stars on the main sequence possess convective cores, with a predomi-
nantly stable radiative envelope above this. The high luminosities established
by nuclear fusion in these stars mean that we expect the convection to be
vigorous; the accompanying high temperatures mean that we expect these con-
vection motions should generally act as magnetic dynamos, since all plausible
estimates of the magnetic Reynolds number ReM are very high; see Table 1. It
may well be that dynamo action is occurring in the radiative layers as well, as
discussed below. Both the flows and fields have lately been targets of intense
scrutiny – partly because asteroseismology has begun to provide powerful new
constraints on this topic, particularly for evolved stars (see, e.g., Stello et al
2016; Ji et al 2023) and also because of the implications these hold for later
stages of stellar evolution (e.g., Fuller and Ma, 2019). In this section, we briefly
review what has been learned by simulations focusing on these types of stars.
A more thorough description can be found in Brun and Browning (2017).

Early global simulations covering some aspects of the problem include
Kuhlen et al (2003), Browning et al (2004), and Brun et al (2005). Taken
together, these papers provided the first numerical estimates of the flows and
magnetism that might be generated in 3D massive star cores. They also gave
some estimates of the overshooting and penetration from the convective zone
into the surrounding stable envelope, the gravity wave response there, and
the differential rotation arising from the interplay of convection, magnetism,
and rotation. Later work has pushed towards more realistic (turbulent) flows,
has examined a variety of initial states (e.g., strong magnetic “fossil” fields)
and srutinized each facet of this complicated problem more systematically. We
refer the interested reader to Meakin and Arnett (2007), Featherstone et al
(2009), Gilet et al (2013), Rogers (2015), Augustson et al (2016), Edelmann
et al (2019), Breton et al (2022), and Baraffe et al (2023) as a representative
sample of relevant work.

There has lately also been sustained interest in the topic of magnetism
generated by dynamo action in the radiative envelope, typically as a result of
the interaction between shear and magnetic instabilities (e.g., Spruit, 1999).
Numerical work – beginning with Braithwaite (2006) and followed by many
others since (e.g., Zahn et al 2007, Duez et al 2010, Jouve et al 2015, Petitde-
mange et al 2023, Ji et al 2023) – has examined the circumstances under which
such dynamo action could occur, and the strength of the resulting fields.

Taken as a whole, these simulations are unequivocal about a few points.
Very strong fields can plausibly be established by dynamo action in the cores
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of some massive stars, whether rotation is dynamically significant or not; for
example, because the convection is rapid, even the “equipartition-scale” field
(equating ρu2

conv with B2/(4π) and assuming MLT scalings for the convective
velocity uconv) would suggest B ≥ 106 G in the interior of a B-type star. Some
of these stars rotate very rapidly, and the saturation strength of the field in
this case is less clear (see, e.g., discussions in Augustson et al 2019), but it
seems likely that strong fields are the norm rather than the exception. The dif-
ferential rotation established within the core is less certain, because it is surely
influenced by the strength of the magnetism – which is likewise influenced by
the shear – but broadly these simulations appear to obey trends similar to
those in simulations of convective envelopes. “Solar-like” differential rotation
(i.e., with a prograde equator) is established when rotation is dynamically sig-
nificant and the magnetism is not too strong; “anti-solar” profiles arise when
the influence of rotation is weaker; magnetism reduces the shear and may yield
solid-body rotation if it grows strong enough. Convective motions overshoot
into the radiative envelope, though the extent of this effect is still being actively
investigated (e.g., Anders et al 2022b, Baraffe et al 2023), and excite a sub-
stantial gravity-wave response that may be detectable even in main-sequence
stars (e.g., Breton et al 2022).

Within the radiative zone itself, the latest simulations (Petitdemange et al
2023, Ji et al 2023) now appear to be capturing some aspects of the long-
envisioned “Tayler-Spruit” dynamo. This differs in some important respects
from the picture originally envisioned by Spruit and debated in Zahn et al
(2007); for example, in the Petitdemange et al (2023) simulations only sub-
critical dynamo action is found, alongside some other dynamo instability. The
saturation amplitude of the field is still very much under debate; see discussions
in Spruit (1999), Fuller et al (2019), and Ji et al (2023).

5.3.3 Low-mass stars and the transition to full convection

Main-sequence stars less massive than the Sun have deeper convective
envelopes (as a fraction of the total stellar radius). Below a mass of about
0.35 M⊙ stars are – in standard 1D models – convective throughout their inte-
riors. This transition occurs at a spectral type of around M3, so “M dwarfs” in
general hold special interest theoretically, as probes of the various roles that
rotation and stratification play in the dynamo. They are also interesting astro-
nomically: the large majority of stars in our galaxy are M dwarfs, and they are
popular targets in the quest to find and characterise exoplanets (e.g., Trifonov
et al 2018).

Here, we briefly review attempts to model these stars numerically. In terms
of fundamental fluid dynamics, these stars have many similarities with pre-
main sequence stars (which are also fully convective, but can have different
internal heating profiles and rotational constraints), so in places our discus-
sion parallels that in Section 5.2.1. In some other respects the flows in these
objects resemble those in giant gaseous planets, so we also draw comparisons
to the extensive literature on planetary dynamos. Finally, there are also many
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similarities with the flow in massive-star cores, which share the same geome-
try (i.e., a full sphere of convection) but are much less strongly stratified than
a main-sequence M dwarf; see Table 1.

The first 3D MHD simulations that aimed specifically to model low-mass
fully convective stars were reported in Dobler et al (2006). They used the Pen-
cil Code, solving the fully compressible equations to model a spherical star
(established via volumetric heating and cooling terms) embedded in a Carte-
sian grid. These first models included only a fairly weak density stratification
(with ρ at the center of the star about a factor of three greater than at its
photosphere). Later, Browning (2008) conducted the first anelastic simulations
(with the ASH code) that mimicked low-mass M dwarfs, including a stronger
density stratification (about a factor of 100 across the deep spherical shell)
and more complex flows. Subsequent work has sampled much lower diffusiv-
ities, more extreme density stratifications, and varying rotational influences.
We note in particular the simulations of Gastine et al (2012) and Yadav et al
(2015a, 2016b), modelling anelastic dynamos in a deep spherical shell with
the MagIC code; Brown et al (2020), who considered a full spherical geom-
etry (i.e., in spherical coordinates but with no singularity at r = 0) using the
Dedalus framework; Käpylä (2021), who considered “star-in-a-box” models
akin to those of Dobler et al (2006) but in a substantially different parameter
regime; and Bice and Toomre (2020, 2022), modelling deep (anelastic) shells
of convection with the Rayleigh code.

Although there are many differences between these models, some broad
trends are now reasonably clear, and largely parallel those realised in other
objects and geometries (as discussed elsewhere in this review). When mag-
netism is weak or absent, both “solar” and “anti-solar” differential rotation
can be realised, depending upon the rotational influence (i.e., some version
of the Rossby number). When magnetism is strong, it reduces this differen-
tial rotation and – if the field gets strong enough – can essentially eliminate
it, leading to solid-body rotation. The spatial structure of the field – e.g., the
fraction of the magnetism in axisymmetric components, or the strength of the
dipole or quadrupole moment – is intertwined with rotation, shear, and density
stratification in a complex manner.

When rotation is strong and shear is weak, the field tends to develop a
large-scale dipolar component; see discussions in, e.g., Gastine et al (2012);
Schrinner et al (2012); Yadav et al (2015a), and an array of related works
modeling planetary dynamos with weak stratifications (e.g., Christensen and
Aubert 2006, Schwaiger et al 2021). In real stars, presumably any large-scale
field generation is accompanied by vigorous SSD, so the overall field likely con-
sists of a very wide range of scales. The dipolar solutions are, at least in some
parameter regimes, more difficult to realise when the density stratification is
strong and when the convective supercriticality is high (e.g., Gastine et al
2012); but there are now multiple examples of highly-stratified, vigorous con-
vection that exhibit strong dipoles (e.g., Yadav et al 2015a), including some at
surprisingly modest rotational constraints (e.g., up to Ro ∼ 0.4 in Zaire et al
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2022). The question of what exactly delineates these states from one another
is a topic of very active investigation (see, e.g., discussions in Menu et al 2020,
Tassin et al 2021, Zaire et al 2022).

When shear is also present, a variety of solutions are possible, including
propagating dynamo waves. Examples abound; see, for example, Yadav et al
(2016b), Käpylä (2021), and Bice and Toomre (2022). Again, it seems reason-
ably clear that the rotational influence is the most crucial control parameter,
but many details remain unclear. Other topics of active interest include the
prevalence of non-axisymmetric features in the field (e.g., Bice and Toomre
2022; Käpylä 2021), or modes in which the bulk of the magnetism is confined
to one hemisphere (e.g., Gallet and Pétrélis 2009; Gastine et al 2012; Brown
et al 2020). Furthermore, Käpylä (2021) reported that the qualitative succes-
sion of dynamo modes as a function of rotation appears to be the same in
simulations of fully and partially convective stars: when rotation increases,
the predominantly axisymmetric steady and cyclic solutions at slow rotation
give way to non-axisymmetric dynamos at rapid rotation. In these models a
similar succession happens with the cycles, so that for moderate rotation the
dynamo waves typically propagate in latitude; when rotation is more rapid,
the large-scale magnetic structure drifts in longitude.

6 Connections to mean-field dynamo theory

Finding out which physical processes lead to the observed magnetic field evo-
lution in 3D convective dynamo simulations is very challenging. An often-used
approach is to interpret the outcome of the simulations in terms of mean-
field dynamo theory. Mean-field theory provides a well-established theoretical
foundation, which can be used to analyses the complex 3D simulation in a
simplified way (e.g. Krause and Rädler, 1980; Brandenburg and Subramanian,
2005); see also Brandenburg et al (2023). Technically this is done by comput-
ing mean-field transport coefficient from 3D simulations and using them in a
corresponding mean-field model. This approach has been successfully used to
pinpoint the cause of magnetic field evolution in many simulations. In mean-
field theory the magnetic and velocity fields are divided into a mean or averaged
part and a fluctuation, e.g. B = B + B′. Only the mean fields are explic-
itly solved for, whereas the (correlations of) fluctuations are parameterized in
terms of the mean. Azimuthal averages are often used for solar and stellar
dynamos such that the resulting mean field is axissymmetric. However, such an
average is not well suited for rapidly rotating stars, where non-axisymmetric
m = 1, 2 modes often dominate (Viviani et al, 2018). Applying the mean-field
approach to the induction equation leads to the emergence of an additional
term, the electromotive force E = u′ ×B′. In mean-field dynamo theory this
term is parameterized in terms of the B and its gradients, assuming that the
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mean fields vary slowly in space and time (Krause and Rädler, 1980),

E i = aijBj + bijk
∂Bk

∂xj
+ . . . , (28)

where the dots represent higher order derivatives that are most often neglected.
The tensors a and b can then be further divided into symmetric and anti-
symmetric parts (e.g. Rädler, 1980), yielding an equivalent representation

E = α ·B + γ ×B − β · (∇×B)− δ × (∇×B)− κ · (∇B)(s), (29)

where (∇B)(s) is the symmetric part of the magnetic field gradient tensor.
The coefficients α and β are rank two tensors, γ and δ are vectors, and κ is a
rank three tensor. These coefficients can be associated with different turbulent
effects important for the magnetic field evolution: the α effect (Steenbeck et al,
1966) leads to field amplification via helical flows; γ describes the turbulent
pumping, which acts like mean flow (e.g. Rädler, 1968; Roberts and Soward,
1975); β describes turbulent diffusion; and the δ effect, also known as the
Rädler effect (Rädler, 1969) or the shear-current effect (e.g. Rogachevskii and
Kleeorin, 2003), can lead to dynamo action in non-helical turbulence in the
presence of shear; and finally, the κ effect, whose physical interpretation is
currently unclear.

The main challenge is to determine these coefficients from a 3D global
convective dynamo simulation. The ultimate goal is to be able to reproduce the
magnetic field solution with a mean-field model using the obtained coefficients.

6.1 Using proxies based on flow and magnetic field
properties

The simplest approach to compare 3D convection simulations with mean-field
theory is to use approximate proxies of turbulent transport coefficients based
on the flow and magnetic field properties. Assuming isotropy and homogeneity
and applying the second order correlation approximation (SOCA), the turbu-
lent transport tensors reduce to scalars αK and β, (e.g. Krause and Rädler,
1980; Brandenburg et al, 2023)

αK = −1

3
τω′ · u′, β =

1

3
τu′2, (30)

where τ is the correlation time of the flow, ω′ = ∇×u′. The expressions of αK

and β are valid in the kinematic regime where the back-reaction of the magnetic
field on the flow is neglected. In a more general approach, the minimal tau-
approximation, this backreaction is retained and this leads to an additional
magnetic contribution to the α effect (Pouquet et al, 1976; Blackman and
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Field, 2002)

αM =
1

3
τρ−1J ′ ·B′, (31)

where J ′ = µ−1
0 ∇×B′. αM can be interpreted as a consequence of magnetic

helicity conservation (see, e.g. Brandenburg et al, 2023). This approach has
been used in many simulation studies to interpret the magnetic field evolution
(Charbonneau, 2020). For example, Warnecke et al (2014) used the α proxy to
conclude that the equatorward migration found in their, and in previous work,
is due to an αΩ Parker dynamo wave driven by a region of negative radial
shear. Similarly, Duarte et al (2016), explained the equatorward migration in
their simulations by the inversion of α and positive radial shear. Guerrero et al
(2016, 2019) concluded that the dynamos in their simulations with tachoclines
were driven by αM below the convection zone. However, it is necessary to
bear in mind the approximate nature of analyses based on proxies: often the
agreement between the simulation and the behavior suggested by the proxy is
qualitative at best and the 3D simulations contain a rich variety of non-linear
interactions that are omitted in such analyses.

6.2 Direct measurements of coefficients

The alternative is to measure the coefficients in Eq. (29) directly from simula-
tions. There are currently two commonly used methods for this. First, B and
E from the 3D dynamo simulation can be used to fit for the turbulent trans-
port coefficients in Eq. (29) using, e.g., multidimensional regression method or
singular value decomposition (SVD) (Brandenburg and Sokoloff, 2002; Racine
et al, 2011). On the other hand, the test field (TF) method uses a sufficiently
large number of linearly independent test fields, that do not back-react on the
solution, and evolves the corresponding B′ and E for each. Then it is possible
to unambiguously invert for the coefficients in Eq. (29) (Schrinner et al, 2005,
2007). Both of these methods are, at best, only as good as the approximate
equation Eq. (29). The validity of the results needs to be tested be inserting
the derived coefficients back into Eq. (29) and to mean-field models to deter-
mine how faithfully they capture the E and time evolution of the mean field
in the 3D simulation.

The SVD method has the issue that Eq. (29) is underdetermined: there
are 27 unknown parameters and only three components of B and E. This is
typically overcome by considering the time dependence of B and E leading to
an overdetermined system. Furthermore, if B does not vary in time the SVD
method has problems to converge. Despite these difficulties this method has
been used to explain the dynamos in several simulations (e.g. Racine et al,
2011; Augustson et al, 2013, 2015). Simard et al (2016) found that the coef-
ficients related the gradients of B (β, δ, κ) are much less important than α
and γ. Furthermore, Simard et al (2013) could reproduce the mean-field evolu-
tion of 3D global simulation using α and γ determined with the SVD method,
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basically assuming it is an α2Ω dynamo. However they had to assume a higher
turbulent diffusivity than what was measured. In follow-up studies the authors
could explain and reproduce a dual dynamo action (Beaudoin et al, 2016) and
generate Grand Minima-like events by including α quenching (Simard and
Charbonneau, 2020). Recently, Shimada et al (2022) analysed the simulations
of Hotta et al (2016) with the SVD method and found that the turbulent dif-
fusion decreases with increasing ReM. However, it is unlikely that Eq. (29),
and hence the SVD method, is valid at high ReM where a SSD is excited.

In the TF method, a set of 9 linearly independent test fields are used
to uniquely determine the 27 unknowns. First developed for the geodynamo
(Schrinner et al, 2005, 2007, 2011, 2012; Schrinner, 2011), it has subsequently
been used for many solar and stellar dynamo simulations (Gent et al, 2017;
Warnecke et al, 2018; Warnecke, 2018; Viviani et al, 2019; Warnecke and
Käpylä, 2020). An important result is that the turbulent pumping is typically
larger than the meridional circulation in global convective dynamo simulations,
rendering the flux-transport dynamo scenario unlikely in those cases (Warnecke
et al, 2018). The conclusion of Warnecke et al (2014) that the equatorward
migration in these kind of simulation is explained by a Parker dynamo wave
was confirmed with the α effect from the TF method (Warnecke et al, 2018,
2021). This was later used to explain the cycle period dependence on rota-
tion in 3D dynamo simulations (Warnecke, 2018). Gent et al (2017) analyzed
the simulations of Käpylä et al (2016) and found that the turbulent transport
coefficients – particularly γ – vary significantly during long-term modulation
of the cyclic mean magnetic field. In the work of Viviani et al (2019), the first
cyclic dynamo in the anti-solar differential rotation regime was explained to be
of α2Ω type using test-field coefficients. Furthermore, Warnecke and Käpylä
(2020) studied the transport coefficients as functions of rotation rate and found
that αΩ dynamos, appear to be possible in a relative narrow range in Ro. The
trace of α with αK agree in pattern and amplitude in a Rossby number range
spanning three orders of magnitude (Warnecke and Käpylä, 2020). As a result
of the test-field analysis (Warnecke and Käpylä, 2020) a magnetic influence
on α as described in Eq. (31) could be ruled out in their simulations. Putting
all the turbulent transport coefficients into a mean-field model, the evolution
of the mean magnetic field of the 3D simulation was reproduced in terms of
period and pattern (Warnecke et al, 2021); see Figure 9. Notably the full spec-
trum of coefficients was needed to fully reproduce the field evolution. This
suggests that all of the turbulent mean-field effects play important roles in
this simulation which is a good representation of current global dynamo simu-
lations. Furthermore, the authors concluded that the assumptions of Eq. (29)
are reasonably well justified in the simulations (Warnecke et al, 2021) given
that the E is also reproduced reasonably satisfactorily (Warnecke et al, 2018;
Viviani et al, 2019).
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Fig. 9 Comparison of direct numerical simulations of Warnecke (2018) and Warnecke and
Käpylä (2020) (top) with a corresponding mean-field model (bottom) where the turbulent
transport coefficients have been obtain with the test field method. The radial (left) and
toroidal (right) mean field is shown as a function of latitude and time. The white contours
on the top right panel indicate the corresponding field of the mean-field model. Adapted
from Warnecke et al (2021).

6.3 Remaining issues

One of the important issues is that the results of the two methods, SVD and
TF, do not fully agree with each other. The SVD method seems to produce
satisfactory results for EULAG-MHD simulation (Simard et al, 2013; Beaudoin
et al, 2016; Simard and Charbonneau, 2020). However, Warnecke et al (2018)
showed that the coefficients determined with the TF and SVD methods give
quite different results and that the SVD coefficients related to the derivative
of B are indeed less important. This discrepancy raises questions regarding
the overlap of the validity ranges and the underlying assumptions of both
methods. A possible reason for the discrepancy is that non-locality (in space
and/or time), which is neglected in Eq. (29), plays a role: the SVD uses the
actual field whereas in TF only very large-scale gradients of test fields are
retained. On the other hand, the actual magnetic fields the SVD uses are not
necessarily linearly independent, leading to errors in the inversion.

SVD and TF methods reveal that turbulent transport effects play an
important role in the dynamic and evolution of the large-scale magnetic field.
Warnecke et al (2021) showed that it is necessary to include practically all of
the possible turbulent effects to reproduce the 3D simulation results in detail.
This makes the corresponding mean-field models quite complex which to a
certain extent defeats the purpose of mean-field modelling where the hope
has been to capture the large-scale behavior of complicated 3D systems by a
much simpler lower-dimensional model. However, the complexity of dynamos
operating in these simulation also hints in the direction that the Sun and
other stars are more complex than simple mean-field models including the
Babcock-Leighton model can describe.
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Another issue is related to the appearance of the SSD instability when
global simulations reach more realistic high-ReM regimes. In this case Eq. (29)
is no longer valid, because a contribution to E that is independent of B is pos-
sible, and non-linearity due to B′ becomes important. If small-scale magnetic
fields due to the SSD are dynamically important, neither the SVD nor TF
method will work in their current form. Efforts to generalize the TF method
to incorporate the effect of the SSD have been taken by Käpylä et al (2022),
leading to four flavours of the method in that regime. Although these flavours
should in principle agree, this is not always the case, especially for high ReM.
Hence, it is of great importance to extend the SVD and TF methods to more
realistic parameter regimes to incorporate effects such as the SSD.

7 Conclusions and future prospects

A central challenge in simulating Solar or stellar dynamos is that, as discussed
above, the interiors of real stars are characterised by extremely low diffusivi-
ties (of momentum, heat, and magnetism), and possess motion and magnetism
over an extraordinarily broad range of spatial and temporal scales. No simula-
tion, now or in the near future, can capture all these scales simultaneously. The
hope of many modelers, though, is that at least some aspects of the dynamics,
particularly on the largest scales, may become independent of the small-scale
details at high enough resolution (low enough diffusivity). There is consider-
able debate – even amongst the authors of this review! – about the extent
to which present-day simulations are nearing this diffusion-free, resolution-
independent regime, and reasons for both optimism and pessimism. Here, we
briefly highlight a few of these.

Current global dynamo simulations of stars routinely capture solar-like
differential rotation and cyclic magnetism. Sometimes these models also repro-
duce equatorward migrating activity akin to the Sun. This occurs at a Rossby
number regime where differential rotation is relatively strong. These results
seem to be fairly robust irrespective of the numerical method or other details
of the simulations. Also the theoretical understanding of the physical mech-
anisms driving the magnetism has developed significantly in the recent years
with more advanced analysis tools such as the test field method, full energy
transfer and field production (emf) analysis, and with direct comparisons to
mean-field models.

Although our understanding of the physics of convection and resulting
dynamo action has increased, new challenges have also been encountered.
The most intriguing of these is the fact that current simulations struggle to
reproduce solar convection and the resulting differential rotation at the solar
luminosity and rotation rate. Given that this is a necessary requirement to get
the dynamo right it is not a huge surprise that reproducing the solar dynamo
remains challenging. This “convective conundrum” is the modern equivalent
to the “dynamo dilemma” of the 1980s. The latter lead to a revival of old, and
the conception of new, ideas about solar and stellar dynamos and a similar
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process is at work with respect to solar and stellar convection at the moment.
The various ideas related to solving the conundrum include entropy rain and
deep weakly subadiabatic convection, the influence of strong small-scale mag-
netism, and rotationally constrained deep convection. Research on this topic
is very active and evolving rapidly, and, far from being stumped by the chal-
lenge posed by the convective conundrum, activity in the modelling of stellar
convection and dynamos has instead been invigorated.

A key issue with the Sun is that even though the deep convection zone is
highly likely rotationally dominated with Ro ≪ 1, there are many scales in the
upper convection zone and near the surface where the rotational influence on
the flow is weak. The Sun is also perhaps close to the transition to anti-solar
differential rotation, which has some observational support, making it difficult
to maintain a solar-like differential rotation profile if the simulations are not
sufficiently near the correct parameter regime. Identifying the correct force
balance prevailing in the solar convection zone is therefore key to this problem.
With this information, simulations can be designed such that they follow a
path leading to the correct balances and hopefully to solar-like results. This
is a practice adopted in simulations of the geodynamo and perhaps a similar
approach can be adopted for the Sun.

On the other hand, the issue regarding rotational influence is not as
severe in stars that rotate more rapidly than the Sun and which are further
away from the solar-like to anti-solar differential rotation transition. There
are indications that simulations capture the characteristics of dynamos, such
as non-axisymmetric large-scale fields, and dipole dominated dynamos in M
dwarfs, in such stars more accurately. Although this is encouraging, we should
also bear in mind that the observational data from other stars is not as accurate
and detailed as the data we have from the Sun.

A common characteristic of all of the current simulations is the fact that
it is not possible to model the surface layers, where the density drops ver-
tiginously, accurately enough. This could be one of the reasons why none of
the current simulations form spots that could play a role in the dynamo pro-
cess via a Babcock–Leighton type effect, and their magnetic activity does not
become independent of rotation at sufficiently low Ro. Self-consistent spot for-
mation has not been reported even in local simulations to say nothing about
global simulations. Therefore capturing spot formation in global simulations
is perhaps as challenging, or even more challenging, than cracking the convec-
tive conundrum. Nevertheless, recent spot formation studies in more idealised
simulation setups serve as a guide for the design of future global simulations
that aim at achieving this.

All of these developments happen on a background where modelers have
started to realize that the holy grail of stellar dynamo simulations – an asymp-
totic regime where results are independent of resolution or diffusivity – remains
elusive, and that the computational cost of adding another data point at a
higher resolution is already prohibitive. This begs the question whether it is
feasible for everyone to try to beat everyone else in this very difficult task or
whether it is better to combine resources for a collaborative effort where the
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resources of at least a large part of the field are directed in producing the “next
generation” transformative simulations.
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Karak BB, Käpylä PJ, Käpylä MJ, et al (2015) Magnetically controlled
stellar differential rotation near the transition from solar to anti-
solar profiles. A&A576:A26. https://doi.org/10.1051/0004-6361/201424521,
https://arxiv.org/abs/arXiv:1407.0984 [astro-ph.SR]

Karak BB, Miesch M, Bekki Y (2018) Consequences of high effective
Prandtl number on solar differential rotation and convective veloc-
ity. Physics of Fluids 30(4):046602. https://doi.org/10.1063/1.5022034,
https://arxiv.org/abs/arXiv:1801.00560 [astro-ph.SR]

Kawaler SD (1988) Angular Momentum Loss in Low-Mass Stars. ApJ333:236.
https://doi.org/10.1086/166740

https://doi.org/10.1088/2041-8205/755/1/L22
https://arxiv.org/abs/1205.4719
https://doi.org/10.1088/0004-637X/778/1/41
https://doi.org/10.1088/0004-637X/778/1/41
https://arxiv.org/abs/1301.2595
https://arxiv.org/abs/1401.2981
https://doi.org/10.1051/0004-6361/201628973
https://doi.org/10.1051/0004-6361/201628973
https://arxiv.org/abs/1605.05885
https://doi.org/10.3847/2041-8213/aa83ab
https://arxiv.org/abs/1703.06845
https://doi.org/10.1080/03091929.2019.1571584
https://doi.org/10.1080/03091929.2019.1571584
https://arxiv.org/abs/1803.05898
https://doi.org/10.1080/03091929.2019.1571586
https://doi.org/10.1080/03091929.2019.1571586
https://doi.org/10.1051/0004-6361/201424521
https://arxiv.org/abs/1407.0984
https://doi.org/10.1063/1.5022034
https://arxiv.org/abs/1801.00560
https://doi.org/10.1086/166740


Springer Nature 2021 LATEX template

Simulations of solar and stellar dynamos and their theoretical interpretation 59

Kippenhahn R, Weigert A, Weiss A (2012) Stellar Structure and Evolution.
Springer: Berlin, https://doi.org/10.1007/978-3-642-30304-3

Kitchatinov LL (2016) Rotational shear near the solar surface as a probe
for subphotospheric magnetic fields. Astron Lett 42:339–345. https://doi.
org/10.1134/S1063773716050054, https://arxiv.org/abs/arXiv:1601.04855
[astro-ph.SR]

Kochukhov O (2021) Magnetic fields of M dwarfs.
A&A Rev.29(1):1. https://doi.org/10.1007/s00159-020-00130-3,
https://arxiv.org/abs/arXiv:2011.01781 [astro-ph.SR]

Kochukhov O, Mantere MJ, Hackman T, et al (2013) Magnetic field topol-
ogy of the RS CVn star II Pegasi. A&A550:A84. https://doi.org/10.1051/
0004-6361/201220432, https://arxiv.org/abs/arXiv:1301.1680 [astro-ph.SR]
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